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A new method to study free transverse
vibration of the human lumbar spine as
segmental multi-layer Timoshenko and
Euler–Bernoulli beams
H. Asgharzadeh Shirazi1, M. Fakher1, A. Asnafi2* and S. Hosseini Hashemi1,3

Abstract

Background: The aim of this study is to propose a method for studying the free transverse vibration of the human
lumbar spine using Timoshenko and Euler–Bernoulli beam theories.

Methods: The cross section of the lumber spine is assumed to be uniform, and the material properties are different
for the vertebral bodies, endplates, and intervertebral discs. To derive equations with biomedical approach, they
were developed with n segments of the lumbar spine including vertebrae, intervertebral discs, and endplates.

Results: Three first natural frequencies and mode shapes of system were computed and then validated with a
finite element analyzer.

Conclusion: Due to good agreements between the results, it was concluded that the proposed method offered
acceptable results; therefore, it can be applied to the entire spine from the neck region to the tailbone and pelvis
ones.
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Background
One of the most important characteristics of a structure is
its free vibration behavior, which is especially important for
identification and further response analysis of the structure.
The human spine, as one of the most important organs in
the body, plays a fundamental role in supporting the loads
arising from both daily and specialized activities. These
loads are mainly dynamic and periodic; therefore, a precise
study on both the free and forced vibration of this structure
may lead to a better understanding of the behavior of the
system, especially in some activities, such as some profes-
sional exercises based on the rhythmic movements of the
lumbar region. It may include some facts about the most
effective exercises or dangerous movements that may be
also applicable for many athletes. The results may also be
used for better rehabilitation of injured persons.

Euler–Bernoulli and Timoshenko beam theories (Rao
2007) have been used in many researches (Han et al.
1999; Chaudhari and Maiti 2000; Lin and Chang 2005;
Dong et al. 2005; Naguleswaran 2002) to study trans-
verse vibration of thin and thick beams, respectively.
These methods have been also used to model and solve
multi-segment beams. For instance, the vibration of geo-
metrically segmented beams with and without crack was
studied by Chaudhari et al. (Chaudhari and Maiti 2000).
They used Euler–Bernoulli theory and applied continuity
as boundary conditions at the junction of the segments.
The continuity conditions were in terms of displace-
ment, slope, shear force, and bending moments. The free
vibration analysis of a multi-span beam with an arbitrary
number of flexible constraints was investigated by Lin et
al. (Lin and Chang 2005). They used Timoshenko beam
theory and considered the compatibility requirements
on each constraint and, finally, determined eigen solu-
tions of the entire system using a transfer matrix
method. Dong et al. (Dong et al. 2005) investigated the
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free vibration of stepped laminated composite by Timo-
shenko beam theory. Naguleswaran (Naguleswaran
2002) evaluated the natural frequencies of a stepped
Euler–Bernoulli beam with three step changes in cross
section on elastic end supports.
From the viewpoint of anatomy, there are seven cer-

vical vertebrae, twelve thoracic vertebrae, and five lum-
bar vertebrae in a human spine or vertebral column.
Two adjacent vertebrae are separated from each other
by superior endplate, intervertebral disc, and inferior
endplate. Each part of the spine has a unique structure.
The vertebra body is composed of the cancellous bone
which is covered by a thin coating of the cortical bone.
An intervertebral disc is also composed of an outer an-
nulus which surrounds an inner gel-like center, i.e., the
nucleus pulposus. If the cross section of the lumber
spine is assumed to be almost uniform while the mater-
ial properties are different for the vertebral bodies, end-
plates, and intervertebral discs, it can be considered as a
beam-like structure whose natural frequencies can be
evaluated using prescribed methods. Based on the actual
structure of the human spine, it is essential to utilize the
theories and models for segmental multi-layer beams.
The previous reports in the literature have also
employed such idealized model of the spine for decreas-
ing the computational time and obtaining the exact ana-
lytical solution (Hussain et al. 2010; Asgharzadeh Shirazi
and Ayatollahi 2014; Shahmohammadi et al. 2014). In this
simplified case, adjacent vertebrae and their interver-
tebral discs in the lumbar region are ideally
considered to be symmetric about their horizontal
and vertical center planes. Although several studies
have been performed on the free vibration analysis of
the whole (Lan et al. 2013; Valentini and Pennestrì
2016) and lumbar (Wang et al. 2016; Guo et al. 2011;
Fan and Guo 2017) spine via finite element method,
limited information is available on the analytical free
vibration examination of the lumbar spine. Due to
the geometrical complexity, ordered or regular vibra-
tional investigations of the human spine have not
been fully accomplished; so, the research in this field
is still widely open.
The main aim of this work is to develop an analytic

approach to study the free transverse vibration of the
human spine by using Timoshenko and Euler–Bernoulli
beam theories. Furthermore, the lumbar region of the
spine is selected for the current study because most
degeneration and structural changes happened in this
zone. In fact, this area is more vulnerable to damage
than the other regions of the spine. Some defects such
as disc degeneration and osteophyte formation are inev-
itable due to the natural procedures of aging and ap-
peared as a result of changes in the structure and
essence of the lumbar spine components. These

phenomena would lead to biochemical and mechanical
changes resulting from structural alterations especially
in the nucleus pulposus and vertebral endplate. In the
present work, the effects of these damages and defects,
which occur over time and aging, have been theoretically
and numerically investigated by changing the mechanical
properties of the lumbar spine components. As also pre-
viously indicated, the cross section of the lumber spine
is assumed to be uniform and the material properties are
different for the vertebral bodies, endplates, and inter-
vertebral discs.

Methods
Problem formulation via Timoshenko and Euler–Bernoulli
beam theories
In this section, the governing equations of segmental
beams were derived using Timoshenko and Euler–Ber-
noulli beam theories. Since vertebrae and intervertebral
discs are composed of two different parts, as shown in
Figs. 1 and 2, in and out subscripts are utilized to describe
the inner and outer parts of each segment, respectively. It
is noted that the endplate segments are homogenous and
are all composed of one material.

Timoshenko beam theory
The bending moment and vertical force equilibrium
equations including rotary inertia and shear deformation
can be expressed in a differential form as (Timoshenko
and Goodier 1970):

dM
dx

−Q ¼
Z
Ain

ρin€uxzdAþ
Z
Aout

ρout€uxzdA ð1Þ

dQ
dx

¼
Z
Ain

ρin€uzdAþ
Z
Aout

ρout€uzdA ð2Þ

where ρ represents the mass density; Q and M are the
stress resultants defined as:

Q ¼
Z
A

σxzdA ð3� aÞ

M ¼
Z
A

σxxzdA ð3� bÞ

Stress–strain relations of the beam based on Hook’s
law can be written as:
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�
σxx ¼ Einεxx 0≤r≤Rin

Eoutεxx Rin≤r≤Rout

�

σxz ¼ 2Ginεxz 0≤r≤Rin

2Goutεxz Rin≤r≤Rout

�

where
Gin ¼ Ein

2 1þ νinð Þ 0≤r≤Rin

Gout ¼ Eout

2 1þ νoutð Þ Rin≤r≤Rout

8>><
>>:

ð4Þ

where E is the elastic modulus, υ is the Poisson’s
ratio, and G is the shear modulus of elasticity. The
displacement fields based on Timoshenko beam the-
ory is defined as:

ux ¼ zϕ x; tð Þ
uz ¼ w x; tð Þ

�
ð5Þ

where ϕ(x,t) and w(x,t) are the rotation of cross section
and vertical displacement of mid-plane at time t, respect-
ively. So, the nonzero strains are given by:

εxx ¼ ∂ux
∂x

¼ z
∂ϕ x; tð Þ

∂x

εxz ¼ 1
2

∂ux
∂z

þ ∂uz
∂x

� �
¼ 1

2
ϕ x; tð Þ þ ∂w x; tð Þ

∂x

� �
8>><
>>:

ð6Þ

Fig. 1 Details of idealized disc–vertebral unit model of two adjacent vertebrae in order to develop to the whole lumbar spine (L1-L5)

a b

Fig. 2 a Clamped–clamped (CC) boundary conditions and b meshed geometry as well as details of the lumbar body components (cross section)
for the whole lumbar spine model (L1-L5)
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By substituting Eq. (6) into Eq. (4), the stress fields as
following equation would be in hand:

σzz ¼ 0

σxx ¼
Ein z

∂ϕ
∂x

� �
0≤r≤Rin

Eout z
∂ϕ
∂x

� �
Rin≤r≤Rout

8>><
>>:

σxz ¼
Gink

∂w
∂x

þ ϕ

� �
0≤r≤Rin

Goutk
∂w
∂x

þ ϕ

� �
Rin≤r≤Rout

8>><
>>:

ð7Þ

in which k denotes shear correction coefficient. By sub-
stituting Eq. (7) into Eqs. (3-a) and (3-b), the new ver-
sions of Eqs. (1) and (2) can be rewritten as:

ρinAin þ ρoutAout
� � ∂2w

∂t2
¼ k GinAin þ GoutAoutð Þ

� ∂ϕ
∂x

þ ∂2w
∂x2

� �
ð8Þ

ρinI in þ ρoutIout
� � ∂2ϕ

∂t2
þ k GinAin þ GoutAoutð Þ

� ϕ þ ∂w
∂x

� �

¼ EinI in þ EoutIoutð Þ ∂
2ϕ
∂x2

ð9Þ

where I is the moment of inertia of the cross section
about its neutral axis. Also, the resultant moment and
shear force are obtained as:

MT ¼ EinI in þ EoutIoutð Þ ∂ϕ
∂x

ð10Þ

QT ¼ k GinAin þ GoutAoutð Þ ϕ þ ∂w
∂x

� �
ð11Þ

Euler–Bernoulli beam theory
In Euler–Bernoulli beam theory, the rotational displace-
ment of the cross section is corresponded to the slope of
the vertical deflection while the shear deformation term is
ignored, i.e., ϕ= − ∂w/∂x (Timoshenko and Goodier 1970).
Moreover, the rotational inertia effect is neglected. There-
fore, the governing equation of the Euler–Bernoulli beam
due to Eqs. (8) and (9) can be expressed as:

EinI in þ EoutIoutð Þ ∂
4w
∂x4

¼ − ρinAin þ ρoutAout
� � ∂2w

∂t2

ð12Þ
The relative resultant moment and the shear force of

the Euler–Bernoulli beam cross section are also pre-
sented as:

ME ¼ − EinI in þ EoutIoutð Þ ∂
2w
∂x2

ð13Þ

QE ¼ − EinI in þ EoutIoutð Þ ∂
3w
∂x3

ð14Þ

FE simulation
The geometry of the lumbar spine was developed based
on anthropometric data, as shown in Fig. 1. In order to
perform a numerical analysis, a geometry sample was
modeled using finite element method for a comparative
study. The finite element (FE) model was simulated
using ABAQUS software (SIMULIA Corporation, Provi-
dence, RI, USA). Quadratic tetrahedral elements of type
C3D10 were employed for meshing the model. There
were 53,011 elements and 75,750 nodes in our model.
As shown in Figs. 1 and 2, there is a 3D model of L1-L5

segment including five vertebrae, eight endplates, and four
intervertebral discs. The lumbar vertebra is modeled by a
cancellous core surrounded by a 1.5-mm-thick cortical
layer. The ratio of the disc height to the height of the
vertebral body is about 1:2.25 in the lumbar region.
Cartilaginous endplates with 0.5 mm thickness were as-
sumed at both superior and inferior surfaces of the inter-
vertebral disc.

Theory/calculation
Free transverse vibration multi-layer segmental
Timoshenko and Euler–Bernoulli beams
In this section, the analytic approach to study the free
vibration of the lumbar spine as a muti-layer segmental
beam is developed. As previously indicated, the beam
has almost uniform cross section but is composed of the
components with different geometry and mechanical
properties. Figure 3 gives the reader an idea about the
model of the multi-layer segmental beam to derive free
vibrational equations in this work.

Free transverse vibration analysis of Timoshenko beam
In order to solve the governing equations of a Timo-
shenko beam, we consider both the slope and deflection
profiles, ϕ(x,t) and w(x,t) as the following form:

w x; tð Þ ¼ W xð Þeiλt
ϕ x; tð Þ ¼ Φ xð Þeiλt

�
ð15Þ

where λ is the frequency of oscillation. By solving Eqs. (8)
and (9), we have:

W j xð Þ ¼ c1 j sinξ1xþ c2 j cosξ1xþ
c3 j sinhξ2xþ c4 j coshξ2xj ¼ 1; 2; 3;…; n

ð16� aÞ
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Φ j xð Þ ¼ kac2 j sinξ1x−kac1 j cosξ1xþ
kbc3 j coshξ2xþ kbc4 j sinhξ2xj ¼ 1; 2; 3;…; n

ð16� bÞ
In the above equation, j relates to the free vibration so-

lution of the nth segment of the beam. Also, the following
parameters are defined as:

ξ1 ¼
η1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η21−4η2

p
2

 !1
2

ξ2 ¼
−η1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η21−4η2

p
2

 !1
2

ð17Þ

η1 ¼
Λ1

Λ2
; η2 ¼

Λ3

Λ2

where

Λ1 ¼ k1k3 þ k2k4−k23
Λ2 ¼ k2k3
Λ3 ¼ k1k4

8<
: ð18Þ

k1 ¼ − ρinI in þ ρoutIout
� �

λ2 þ k GinAin þ GoutAoutð Þ;
k2 ¼ − EinI in þ EoutIoutð Þ; k3 ¼ k GinAin þ GoutAoutð Þ;
k4 ¼ ρinAin þ ρoutAout

� �
λ2;

Also ka and kb in Eq. (16-b) are:

ka ¼ k3ξ1
k1−k2ξ

2
1

kb ¼ −k3ξ2
k1 þ k2ξ

2
2

8>><
>>: ð19Þ

To calculate the natural frequencies of Timoshenko beam,
it is essential to satisfy the following boundary conditions:

Clamped� Clamped : W 1 0ð Þ ¼ Φ1 0ð Þ ¼ 0;Wn Lð Þ ¼ Φn Lð Þ ¼ 0

Simply � Simply : W 1 0ð Þ ¼ MT
1 0ð Þ ¼ 0;Wn Lð Þ ¼ MT

n Lð Þ ¼ 0

ð20Þ

Furthermore, following compatibility conditions should
be established in the contact boundary between the differ-
ent adjacent segments:

MT
j L�j
� 	

¼ MT
jþ1 L�j
� 	

;QT
j L�j
� 	

¼ QT
jþ1 L�j
� 	

; j ¼ 1; 2;…; n−1:

W j L�j
� 	

¼ W jþ1 L�j
� 	

;Φ j L�j
� 	

¼ Φ jþ1 L�j
� 	

; j ¼ 1; 2;…; n−1:

ð21Þ

where L�j is the length of the contact place of jth segment
to (j + 1)th one. As it can be observed from above equa-
tions, there are 4n equations and 4n unknown coefficients
that must be solved to have a nontrivial set of solution.

Free transverse vibration analysis of Euler–Bernoulli beam
In Euler–Bernoulli beam, to obtain the natural frequen-
cies, only the deflection profile is considered. In other
words, it is assumed that the deflection profile, w(x,t)
has the following form:

w x; tð Þ ¼ W xð Þeiλt ð22Þ

By considering Eq. (22) and solving Eq. (12), we have:

W j xð Þ ¼ c1 j sinξxþ c2 j cosξxþ c3 j sinhξxþ c4 j coshξx
j ¼ 1; 2; 3;…; n

ð23Þ

where j relates to the free vibration solution of the nth
segment of the beam and ξ1 and ξ2 are also given by:

Fig. 3 Assumed tapered beam to derive free vibrational equations in this work

Table 1 Material properties of the model

Spinal components Density
(10−6 kg/
mm3)

Normal case Case 1 Case 2 Case 3 Case 4

Elasticity modulus (MPa)–Poisson’s ratio

Cortical bone (Rohlmann et al. 2006; Zander et al. 2006) 1.83 5000–0.30 5000–0.30 5000–0.30 5000–0.30 5000–0.30

Cancellous bone (Rohlmann et al. 2006; Zander et al. 2006) 1.00 500–0.25 500–0.25 500–0.25 500–0.25 500–0.25

Endplate (Wang et al. 2016; Kurutz and Oroszváry 2010) 1.83 100–0.40 100–0.40 100–0.40 1000–0.30 5000–0.30

Nucleus pulpous (Asgharzadeh Shirazi and Ayatollahi 2014; Chen et al. 2008) 1.36 10–0.49 50–0.40 100–0.30 10–0.49 10–0.49

Annulus fibrous zone (Chen et al. 2001; Lee et al. 2000) 1.20 175–0.30 175–0.30 175–0.30 175–0.30 175–0.30
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ξ ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρinAin þ ρoutAout
� �
EinI in þ EoutIout

s0
@

1
A

1
2

; ð24Þ

The following boundary conditions should be also sat-
isfied to determine the natural frequencies of the Euler–
Bernoulli beam:

Clamped� Clamped : W 1 0ð Þ ¼ ∂W 1 0ð Þ
∂x

¼ 0;Wn Lð Þ ¼ ∂Wn

∂x
Lð Þ ¼ 0

Simply � Simply : W 1 0ð Þ ¼ ME
1 0ð Þ ¼ 0;Wn Lð Þ ¼ ME

n Lð Þ ¼ 0

ð25Þ

In addition, following compatibility conditions should
be considered in the contact boundaries between the ad-
jacent segments:

ME
j L�j
� 	

¼ ME
jþ1 L�j
� 	

;QE
j L�j
� 	

¼ QE
jþ1 L�j
� 	

; j ¼ 1; 2;…; n−1:

W j L�j
� 	

¼ W jþ1 L�j
� 	

;
∂W j L�j

� 	
∂x

¼
∂W jþ1 L�j

� 	
∂x

; j ¼ 1; 2;…; n−1:

ð26Þ

Similar to what was proceeded for the Timoshenko
beam, 4n equations and 4n unknown coefficients, it was

found that in order to attain the nontrivial solution, the
determinant of the coefficient matrix must be zero.

Results
Free transverse vibration analysis of the lumbar spine as
a case study
The lumbar spine is composed of a set of discrete bony
elements (vertebrae) connected by compliant structures
such as endplates and intervertebral discs. This combin-
ation of unique elements, with different geometry and
properties, gives the spine a great flexibility in the
three-dimensional space to do even complex movements.
The variation in material properties of spinal components
owing to age, gender, and tissue degeneration may result
in the changes in natural frequencies and modal modes of
the structure. In this study, since the vertebrae and discs
are more subject to damage and their characteristics
change over time and aging, three first natural frequencies
and modes of the lumbar spine were investigated for
different mechanical properties of the endplates and the
intervertebral discs. In fact, the changes in material
properties of endplate and nucleus pulposus occur when
they gradually lose their flexibilities and begin to tighten.
In other words, the cartilaginous endplate converts slowly
to a bony-like tissue and the nucleus loses its gel-like state

Table 2 Three first natural frequencies for all case studies

Cases Outcomes from equations (cycles/time) Outcomes from ABAQUS (cycles/time) Error (%)

N.F. 1 N.F. 2 N.F. 3 N.F. 1 N.F. 2 N.F. 3 N.F. 1 N.F. 2 N.F. 3

Normal case 658.7 1423.5 2270.1 634.3 1329.0 2082.6 3.6 6.6 8.2

Case 1 687.4 1497.5 2402.5 686.5 1473.4 2351.6 0.1 1.6 2.1

Case 2 719.4 1580.4 2550.3 725.8 1581.1 2547.4 0.8 0.06 0.1

Case 3 685.0 1477.9 2355.3 667.3 1400.9 2199.6 2.6 5.2 6.6

Case 4 687.4 1482.9 2362.9 675.5 1418.4 2228.8 1.7 4.3 5.6

a b c

Fig. 4 a First, b second, and c third natural modes of the normal case
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and behaves like a solid. Table 1 indicates the various
material properties of the lumbar spine components used
in this work according to the previous literature. More-
over, clamped–clamped (CC) boundary conditions were
considered because the lumbar spine was fixed between
the thorax and the sacrum regions.
Table 2 lets one see the first natural frequencies ob-

tained from the method presented in this article and
those attained via FE solver. Figure 4 also demonstrates
the first three natural mode shapes of the model for a
normal body. It is to be noted that the results presented
in Table 2 and Figs. 4, 5, 6, 7, and 8 are those obtained

from the Timoshenko beam. In fact, both beams were
modeled in this article and the results for both models
were obtained but for the region that it was considered
in this article i.e. L1-L5 (see Fig. 2), Timoshenko beam
gave better results while for the whole spine which was
not the goal of this paper, the other one worked better.
The results accomplished via the method in this article
and the finite element solver are drawn and compared
to each other. Good agreements are seen for both the
values of natural frequencies (Table 1) and the normal
mode shapes (Fig. 4) that guarantee the correctness of
the results.

a b c

Fig. 5 a First, b second, and c third natural modes of case 1

a b c

Fig. 6 a First, b second, and c third natural modes of case 2
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Discussion
A validation study
As it can be seen in Table 2, all the analytical outcomes
in all case studies are so close to those obtained via finite
element simulator. This confirms the correctness of the
method used and the results attained in this article.

A discussion on the case studies
As indicated previously, as we age, the flexibility of nucleus
pulpous and endplates may decreases and they become stif-
fer than their normal situation. Figures 5 and 6 let someone
see the effect of flexibility reduction of nucleus pulpous on
natural frequencies. The modulus of elasticity increases five

and ten times with respect to the normal case in cases 1
and 2 respectively. These result in an increase in natural
frequencies (see Table 2). For better visual verification, the
first three normal modes achieved from the analytic equa-
tions and the finite element solver are drawn and compared
to each other.
Similar to previous cases, Figs. 7 and 8 illustrate the

influence of flexibility reduction of endplates on natural
frequencies. In cases 3 and 4, the endplate modulus of elas-
ticity increases ten and 50 times with respect to the normal
case respectively. Again, this causes an intensification in
natural frequencies (see Table 2). Like previous cases, the
first three normal modes obtained from the analytic

a b c

Fig. 7 a First, b second, and c third natural modes of case 3

a b c

Fig. 8 a First, b second, and c third natural modes of case 4
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equations and the finite element solver are drawn and com-
pared to each other for better visual confirmation.

Conclusions
Using Timoshenko and Euler–Bernoulli beam theories,
as an analytic approach, the governing equations of
transverse vibrations of both thick and thin beams were
derived and applied for n segments of the lumbar spine
including vertebrae, intervertebral discs, and endplates.
The developed system of equations was employed to
obtain the natural frequencies and normal mode shapes
of the model. The problem was similarly simulated in
ABAQUS software, as the finite element analyzer, to val-
idate the results attained from the analytical approach.
The first three natural frequencies and mode shapes of
the model for a normal body were calculated, drawn, and
validated by finite element simulator outcomes. Good
agreements are seen for both the values of natural
frequencies and the normal mode shapes that guarantee
the correctness of the results. The effect of flexibility
reduction of both nucleus pulpous and endplates on the
natural frequencies was investigated. It was shown that
the natural frequencies become larger as the aging occur.
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