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Abstract

Background: Experimental determination of properties of engineering materials is quite expensive and time consuming.
Computational methods of predicting the properties of materials, such as artificial neural network (ANN), are easier and
bereft of complex mathematics that characterizes analytical methods. Also, Nigeria consumes a lot of bottled and sachet
water. Most of the bottles and sachets are made with low density polyethylene (LDPE) and these sachets constitute a
major source of pollution in Nigerian cities and towns. In addition, date palm is a major cash crop in Nigeria.

Methods: In this study, an artificial neural network (ANN) approach is used to predict the mechanical properties of date
palm wood fiber-recycled low density polyethylene composite. In the artificial neural network, multi layer perceptron
architecture (MLP) with back-propagation is utilized. In ANN training module, the ground fibres weight percent (wt %)
was used as input for various particles sizes (150, 212, 250 and 300 µm). The outputs consist of the ultimate tensile
strength, elongation, tensile modulus, flexural strength, flexural modulus and hardness for the particle sizes: 150, 212, 250
and 300 µm. The artificial neural network system was trained using the prepared training set. After the training process,
the test data were used to check the system accuracy.

Results: The correlation coefficients of all predictions with experimental values were more than 0.99.

Conclusion: These results show that artificial neural network is very successful in the prediction of the mechanical
properties.
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Background
Inorganic materials have been used as fillers in the polymer
industry for production of composites. These materials face
some problems such as

� High density
� High cost of production
� High cost of raw material procurement
� Not easily available
� Abrasive to the processing equipment
� Low specific properties
� Low insulating properties
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Due to these enumerated reasons, organic fillers are
increasingly being considered in composite production.
Hence, date palm wood was used as filler to develop the
polymer composite used in this work. Mechanical prop-
erties of materials are extremely important and deter-
mine the quality of the material with respect to its
application to engineering. Polymer composites are a very
important class of engineering materials.
Nigeria is in the tropics and borders the Sahara Desert.

Date palms are abundant in Northern Nigeria. Large quan-
tities of date palm nuts are consumed in Nigeria either dir-
ectly as food or indirectly as raw material in food and agro-
based industries (AbdulQadir et al. 2011). Information on
date palm production levels in nine states in Nigeria reveals
that date palm production is increasing. The states are Bau-
chi 6,000 metric tons, Adamawa 600 metric tons, Borno
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1,000 metric tons, Gombe 1,500 metric tons, Jigawa 5,000
metric tons, Kano 6,000 metric tons, Plateau 100 metric
tons, Taraba 200 metric tons and Yobe 2000 metric tons
(Nigerian Institute for Oil Palm Research 2008). As the
level of production of date palm increases, the waste from
it increases as well. The conversion of the waste to useful
material will whittle down the impact of the waste to the
environment. Again, the geographic location of date palm
may influence the property of the resultant composite. In
this work, particle size and particle loading were varied
since mechanical properties depend strongly on them
(Shao-Yun et al. 2008).
Secondly, Nigeria consumes a lot of bottled and sachet

water. Most of the bottles and sachets are made with low-
density polyethylene (LDPE), and these sachets constitute a
major source of pollution in Nigerian cities and towns
(Atuanya 2013), thanks to the volume of waste from
recycled low-density polyethylene sachets used for pack-
aging potable water generated in Nigeria which rose up to
22.4 million tons in 2012 (Akinro et al. 2012). Our choice
of recycled LDPE is borne out of environmental consider-
ation, as LDPE from sachets disposed from consumed
water sachets constitutes environmental hazards in our
towns, cities and villages.
The literature is replete with works done on the use of

date palm fibre as fillers for composites. For instance, Sbiai
et al. (2008) used epoxy as the matrix in a composite devel-
oped with date palm fibres and investigated the effect of
fibre sizes on the physicochemical and mechanical proper-
ties (flexural and tensile). They reported improved mechan-
ical properties in both the linear and non-linear range upon
addition of date palm tree fibres, especially when the
shorter fibres were used. Al-Kaabi et al. (2005) investigated
the potential of natural fibre extracted from the date palm
tree as reinforcement for polyester matrix composites.
Their results show that these fibres may yield reasonable
properties and could be used for low-cost applications that
require low to medium strength. Mahdavi et al. (2010)
compared the mechanical properties of composites made
from various fibres extracted from date palm and
high-density polyethylene. Bendahou et al. (2008) used
Figure 1 Date palm wood flour.
compatibilized low-density polyethylene and polypropylene
as matrices for a data palm fibre-based composite. They
characterized morphology and thermal and mechanical
properties of the resulting composites using SEM, DSC and
tensile tests. They reported that compatibilization enhanced
the mechanical performances for both sets of composites
up to a critical amount of compatibilizer, beyond which the
degree of crystallinity of the matrix decreases. Other works
where date palm fibre is used as fillers for polymer compos-
ites include Wazzan (2005), Al-Khanbashi et al. (2005), etc.
From the literature, it is apparent that percentage compos-
ition, particle sizes and type of fillers affect the mechanical
properties of composites. One of the ways this work differs
from the others mentioned above is that we used recycled
low-density polyethylene for our study and investigated the
effect of fibre sizes and percentage composition on six
mechanical properties of the composite.
Traditionally, laboratory trial mixes have been used to de-

termine the mechanical properties of polymer composites,
as well as other engineering materials. Experimental deter-
mination of mechanical properties of materials is costly and
time-consuming. Finding a potable low-cost way of predict-
ing the strength of polymer composite materials would
help in solving the problem (Nwobi-Okoye et al. 2013;
b

Figure 2 Setups for some mechanical tests. (a) Tensile test setup
and (b) Flexural test setup.



Figure 3 An artificial neuron.
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Umeonyiagu and Nwobi-Okoye 2013). One way this could
be done is by developing a computational model based on
artificial neural network technology for predicting the
strength of polymer composite materials (Nwobi-Okoye
et al. 2013; Umeonyiagu and Nwobi-Okoye 2013). With
mathematical and computational models, a designer can
easily find the best combination of constituent materials to
balance strength and cost.
An artificial neural network (ANN), usually called ‘neural

network’ (NN), is a mathematical model or computational
model that is inspired by the structure and/or functional as-
pects of biological neural networks (Russell and Norvig
2003). The concept of artificial neurons was first introduced
in 1943 (McCulloch and Pitts 1943). Russell and Norvig
(2003) stated that since 1943 when McCulloch and Pitts
Figure 4 Two-input feedforward neural network model.
introduced the concept of neurons, much more detailed
and realistic models have been developed both for neu-
rons and for larger systems in the brain, leading to the
modern field of computational neuroscience. Since the
work of McCulloch and Pitts in 1943, ANN has had wide
application in many spheres of life. According to Maier and
Dandy (2000), in recent years, ANNs have become ex-
tremely popular for prediction and forecasting in a
number of areas, including finance, power generation,
medicine, water resources and environmental science.
The utility of artificial neural network models lies in the

fact that they can be used to infer a function from observa-
tions. This is particularly useful in applications where the
complexity of the data or task makes the design of such a
function by hand impractical (Russell and Norvig 2003).



Figure 5 Single-input, three-layer feedforward neural network model.
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The tasks to which artificial neural networks are applied
tend to fall within the following broad categories:

i. Function approximation, or regression analysis,
including time series prediction, fitness
approximation and modelling

ii. Classification, including pattern and sequence
recognition, novelty detection and sequential
decision making

iii. Data processing, including filtering, clustering, blind
source separation and compression

iv. Robotics, including directing manipulators,
computer numerical control

The literature is replete with works on the application of
ANNs for the prediction of properties of engineering mate-
rials. Ozerdem and Kolukisa (2009) used ANN to predict
the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys.
In the work, Cu-Sn-Pb-Zn-Ni weight percent (wt%) con-
tents were used as inputs, while yield strength, tensile
strength and elongation were the outputs. The results of
the study showed that neural network was successful in the
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Figure 6 Ultimate tensile strength (experimental results and ANN pre
of ultimate tensile strength with filler content. (b) Prediction of ultimate te
prediction of yield strength, tensile strength and elongation
of Cu-Sn-Pb-Zn-Ni cast alloys. Hassan et al. (2009) used
ANN in predicting some physical properties of (porosity
and density) and hardness of aluminium-copper/silicon car-
bide composites. The result they obtained showed that
maximum relative error for predicted values did not exceed
5.99%. Bilim et al. (2009) used ANN to predict the com-
pressive strength of ground granulated blast furnace slag
concrete. The results showed that ANN can be an alterna-
tive approach for predicting the compressive strength of
the material. Asilturk and Cunkas (2011) used artificial
neural network and multiple regression method to predict
the surface roughness in turning operations. The results
show that ANN predicted better than the models based on
regression. Mukherjee and Biswas (1997) in their paper ap-
plied artificial neural networks for the prediction of the
mechanical behaviour of concrete materials at high
temperature. Their results were very encouraging. Oretal
and Kawashima (2003) in their paper proposed an
ANN-based model to predict the confined compres-
sive strength and corresponding strain of circular
concrete columns. Their study shows the importance
b
dictions) at 150 μm and initial LDPE UTS of 12 MPa. (a) Variation
nsile strength (experimental vs ANN predictions).
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Figure 7 Ultimate tensile strength (experimental results and ANN predictions) at 212 μm and initial LDPE UTS of 12 MPa. (a) Variation
of ultimate tensile strength with filler content. (b) Prediction of ultimate tensile strength (experimental vs ANN predictions).
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of validating the ANN models in simulating physical
processes especially when data are limited. The ANN
model they developed was also compared to some
analytical models and was found to perform well.
Other papers on the prediction of material strength
using neural networks include the following: Lee (2003),
Kasperkiewicz et al. (1995), Ahmet et al. (2006), Topcu and
Saridemir (2008), etc.
Maier and Dandy (2000) reviewed 43 papers dealing

with the use of neural network models for the prediction
and forecasting of water resource variables in terms of
the modelling process adopted. They identified inad-
equate model building as the obstacle militating against
accurate predictions using artificial networks. They sug-
gested that ANN models must be properly evaluated be-
fore their application in time series analysis.
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Figure 8 Ultimate tensile strength (experimental results and ANN pre
of ultimate tensile strength with filler content. (b) Prediction of ultimate te
Their assertion is corroborated by Chatfield (1993) when
commenting on the suitability of ANNs for time series ana-
lysis and forecasting, who commented thus ‘when the dust
has settled, it is usually found that the new technique is nei-
ther a miraculous cure-all nor a complete disaster, but ra-
ther an addition to the analyst's toolkit which works well in
some situations and not in others’.
It is important to note that a neural network model-

ling is purely a computational technique. Hence, if one
wants to explain an underlying process or mathematical
framework that produces the relationships between the
dependent and independent variables, it would be better
to use a more traditional statistical model like regression
analysis. However, if model interpretability is not import-
ant, one can often obtain good model results more quickly
using a neural network.
b
dictions) at 250 μm and initial LDPE UTS of 12 MPa. (a) Variation
nsile strength (experimental vs ANN predictions).
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Figure 9 Ultimate tensile strength (experimental results and ANN predictions) at 300 μm and initial LDPE UTS of 12 MPa. (a) Variation
of ultimate tensile strength with filler content. (b) Prediction of ultimate tensile strength (experimental vs ANN predictions).
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Reinforcement is generally responsible for strengthen-
ing the composite and improves its mechanical properties.
All of the different fibres used in composites have different
properties and so affect the properties of the composite
in different ways. This also provides stiffness to the
composites (Myers et al. 1991).
The advantages of composite materials over conventional

materials stem largely from their higher specific strength,
stiffness and fatigue characteristics, which enables struc-
tural design to be more versatile. They also have good re-
sistance to corrosion, low cost, increased toughness and
good resistance to fire (Bledzki and Gassan 1999).
Fillers find application in the polymer industry, almost

exclusively to improve mechanical, thermal and electrical
properties and dimensional stability (George et al. 2001).
Fillers increase the number of chains, which share the load
of a broken polymer chain.
Neural network approach was used to predict the mech-

anical properties of date palm wood fibre-low density
polyethylene composite. Predicting mechanical properties
of polymer composite is necessary in engineering design
applications (Mukherjee and Biswas 1997; Lee 2003). The
neural network model developed has intuitive and theor-
etical appeal. It was developed based on the assumption
Table 1 Ultimate tensile strength prediction summary

Grain
size (μm)

Correlation
coefficient R

Epoch Mean squared
error (MSE)

150 0.99809 15 0.00018626

212 0.99682 10 0.00001609

250 0.99797 12 0.00005755

300 0.99805 32 0.00001106
that the experimental results were generated by a stochas-
tic process. The model developed was in very good agree-
ment with values obtained from the experiment.
Summarizing, in this work, low-density polyethylene from

containers used to bag potable water was gathered, recycled
and combined with date palm wood fibre flour to produce a
composite material. The mechanical properties of the ma-
terial, namely the ultimate tensile strength, elongation, ten-
sile modulus, flexural strength, flexural modulus and
hardness, were experimentally determined for various per-
centage weight compositions of date palm wood fibre ran-
ging from 0% to 30% and for various particle sizes, namely
150, 212, 250 and 300 μm. Later, the experimentally deter-
mined mechanical properties of the composite at various
percentage compositions of the date palm wood fibre and at
various particle sizes were used to train an ANN; the
trained ANN was later used to predict the mechanical prop-
erties of the composite at various percentage compositions
of the date palm wood fibre and at various particle sizes.

Methods
The mechanical properties of the composite were first de-
termined experimentally. The experimental results were
subsequently used as input data to train and test the neural
network model developed in this study. The procedures
and materials used to obtain the experimental data are pre-
sented in this section.

Materials and equipment
Collection and preparation of date palm wood
flour/LDPE composite
The date palm wood was obtained from Nnamdi Azikiwe
University Awka, permanent site, Anambra State, Nigeria.
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Figure 10 Elongation (experimental results and ANN predictions) at 150 μm and initial LDPE elongation of 90%. (a) Variation of
elongation with filler content. (b) Prediction of elongation (experimental vs ANN predictions).
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The shells were sun-dried in the open air to a moisture
content of about 8%, crushed and ground. The ground
wood was sieved using a mechanical sieve of size 150, 212,
250 and 300 μm. The date palm wood flour is shown in
Figure 1. The sieved wood was dried in a laboratory oven
at 105°C to a final moisture content of 3% to 4% and
stored in plastic bags for further compounding.

Collection and preparation of recycled low-density polyethylene
The recycled low-density polyethylene (LDPE) plastic
container was obtained from the refuse bin. The plastic
was washed and sun-dried to remove dirt. The (LDPE)
materials were cut to small sizes to enable the crushing
machine to accept the material after drying.
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Figure 11 Elongation (experimental results and ANN predictions) at 2
elongation with filler content. (b) Prediction of elongation (experimental vs
Methodology
The date palm wood flour constitutes the filler for the
composite. The date palm wood flour of different weight
percent was filled with the remaining percentage being
LDPE. The particle sizes of 150, 212, 250 and 300 μm
were used to examine the size effect of date palm wood
flour as filler in the properties of LDPE, respectively.
These particle sizes were examined to find the one which
gives the best properties on the LDPE. The date palm
wood of each of the flours was filled at 2%, 4%, 6%, 8%,
10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28% and
30% by weight of the filler content, respectively.
The filler and polyethylene were mixed at different

percentage compositions of the flour. The density of
b
12 μm and initial LDPE elongation of 90%. (a) Variation of
ANN predictions).
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Figure 12 Elongation (experimental results and ANN predictions) at 250 μm and initial LDPE elongation of 90%. (a) Variation of
elongation with filler content. (b) Prediction of elongation (experimental vs ANN predictions).

Atuanya et al. International Journal of Mechanical and Materials Engineering 2014, 1:7 Page 8 of 20
http://www.springer.com/40712/content/1/1/7
the LDPE was 0.91 g/cm3. The mixing of the
recycled LDPE and date palm wood flour was done
using a single screw extruder with serial number
811613 manufactured by Dongyang Fuqiang Elec-
trical Industry Co., Ltd, China. The diameter of the
screw was 25 mm, and the ratio of length to diam-
eter was 3.6. Since the melting point of LDPE is
115°C, the temperature of the screw extruder was
set at 130°C to 140°C during the compounding
process to ensure that the melt flow index of at least
9.0 g/10 min is achieved for successful mixing. Melt
compounding was chosen because dry blending of
the material before loading the mould could result
in an uneven mix due to the considerable differences
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Figure 13 Elongation (experimental results and ANN predictions) at 3
elongation with filler content. (b) Prediction of elongation (experimental vs
in particle size, morphology and specific gravity of
the two materials. Each of the mixture was
injection-moulded using an injection moulding ma-
chine. The composites which were produced were
allowed to cool at room temperature. Prior to mech-
anical tests, the composites were conditioned at 65%
relative humidity and at room temperature of 23°C.
Testing of tensile specimen properties
The tensile test was carried out using a universal tensile
machine (ENERPAC model No PUJ1200E) in accordance
with ASTM D638 (ASTM 2013a). The test was performed
at a cross-head speed of 5 mm/min.
b
00 μm and initial LDPE elongation of 90%. (a) Variation of
ANN predictions).



Table 2 Elongation prediction summary

Grain
size (μm)

Correlation
coefficient R

Epoch Mean squared
error (MSE)

150 0.99737 10 0.00217180

212 0.99818 11 0.00122960

250 0.99430 9 0.00659740

300 0.99835 19 0.00310500
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The dimensions of tensile test specimen size for ASTM
used were 3 mm × 12.5 mm × 60 mm. The specimen was
placed in the grips of the machine and pulled until there
was failure. The ultimate tensile strength, elongation and
modulus were determined. Figure 2a shows the setup for
the tensile test.

Testing of flexural specimen properties
The equipment used for this was a universal testing
machine, ENERPAC model No PUJ1200E, located at
Standard Organization of Nigeria, Enugu State. The test
was performed under the room temperature.
The dimension of flexural test specimen size for ASTM

D790 (ASTM 2013b) used was 3 mm × 40 mm × 140 mm.
The length of support span was 100 mm, the specimen lied
on a support span, and the load was supplied to centre of
the sample. The test was stopped when failure occurred.
The flexural strength and modulus were determined.
Figure 2b shows the setup for the flexural test.

Testing of Izod notch impact specimen
The equipment used for this test was an impact tester
machine manufactured by Samuel Devison Ltd, Leeds,
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Figure 14 Tensile modulus (experimental results and ANN prediction
tensile modulus with filler content. (b) Prediction of tensile modulus (expe
England (model number LS102 DE) located at Standard
Organization of Nigeria, Enugu State.
The dimension of Izod impact testing specimen size

for ASTM D256 (ASTM 2013c) used was 3 mm× 10 mm×
55 mm. The specimen was clamped into the machine. The
pendulum from the impact tester was released and allowed
to strike through the specimen. The Izod notched impact
energy absorbed was determined.

Neural networks
As has been previously mentioned, the origin of artificial
neurons (ANNs) is based on the work of McCulloch and
Pitts in 1943 (McCulloch and Pitts 1943). Artificial neurons
are building blocks for artificial neural networks. We shall
discuss here the structure artificial neurons and neural
network used in this research.

Artificial neurons
Artificial neural networks make use of artificial neurons.
ANNs simulate the manner of operation of natural neu-
rons in the human body. The basic unit of operation of
an ANN is the neuron shown in Figure 3.
In a typical neuron shown in Figure 3, the input to the

neuron xi is multiplied by a weighting function Wi to
generate the transformed input Wixi. The transformed
inputs are summed to obtain the summed input. The
summed input constitutes the variables to the activa-
tion/transfer function, g, which generates the output ai.
The output of the transfer function is compared to a
threshold value. If the output is greater than the thresh-
old value, the neuron is activated and signal is trans-
ferred to the neuron output; alternatively, if it is less, the
signal is blocked.
b

s) at 150 μm and initial LDPE modulus of 0.4 GPa. (a) Variation of
rimental vs ANN predictions).
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Figure 15 Tensile modulus (experimental results and ANN predictions) at 212 μm and initial LDPE modulus of 0.4GPa. (a) Variation of
tensile modulus with filler content. (b) Prediction of tensile modulus (experimental vs ANN predictions).
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Given an input vector X = (x1, x2,… xn), the activations
of the input units are set to (a1, a2,… an) = (x1, x2,… xn)
and the network computes to

Ini ¼
Xn

j¼1

Wj;iaj ð1Þ

ai ¼ g Inið Þ: ð2Þ

The transfer function could be a threshold transfer
function, a sin function, a sigmoid function, hyperbolic
tangent function, etc. Differentiable transfer functions
are preferred. Similarly, non-linear transfer functions
perform better than linear transfer function. Bearing
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Figure 16 Tensile modulus (experimental results and ANN prediction
tensile modulus with filler content. (b) Prediction of tensile modulus (expe
these in mind, in this particular application, we chose
the sigmoid function. The sigmoid activation function
is given by the equation

ai ¼ g Inið Þ ¼ 1
1−e−Ini

: ð3Þ

Training the network (learning) could be a supervised
or unsupervised training. In supervised training, the
network is provided with the inputs and appropriate
outputs; hence, the network is trained with a set of ex-
amples in a specified manner. In unsupervised/adaptive
learning, the network is provided with inputs but not
the outputs. In this present application, we used the
b
s) at 250 μm and initial LDPE modulus of 0.4GPa. (a) Variation of
rimental vs ANN predictions).
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Figure 17 Tensile modulus (experimental results and ANN predictions) at 300 μm and initial LDPE modulus of 0.4 GPa. (a) Variation of
tensile modulus with filler content. (b) Prediction of tensile modulus (experimental vs ANN predictions).
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supervised learning; hence, the appropriate network
architecture is the feedforward architecture.

The feedforward network architecture
As has been mentioned, the developed neural network
models are feedforward multiplayer perceptron networks
(MLP). The hidden units as previously noted use the
sigmoid activation function. The network model is
shown in Figure 4.
In the feedforward network shown in Figure 4, the

output of the network is compared with the desired out-
put. The difference between the output and the desired
output is known as the error, E. ANNs learn by trying to
minimize this error. The learning process uses optimisa-
tion algorithms such as the Levenberg-Marquardt algo-
rithm, gradient descent algorithm, genetic algorithm or
some other natural optimisation algorithm. These algo-
rithms work by adjusting the weights, Wi, such that the
error, E, is minimized. Most ANNs use the simple gradi-
ent descent optimisation algorithm. In this work, we used
this algorithm. Hence, the learning process uses the sum
of squares error criterion E to measure the effectiveness
of the learning algorithm.

E ¼ 1
2
Err2≡

1
2

y−hW xð Þð Þ2 ð4Þ
Table 3 Tensile modulus prediction summary

Grain size (μm) Correlation
coefficient R

Epoch Mean squared
error (MSE)

150 0.99737 11 0.00004180

212 0.99760 10 0.00016772

250 0.99918 7 0.00031089

300 0.99965 12 0.00000615
Here
y = Y = the true/experimental value

Ŷ ¼ hW xð Þ ð5Þ
hW (x) is the output of the perceptron.

The ANN for predicting the mechanical properties of date
palm fibre/polymer composite
Recall that our application is for the prediction of the
mechanical properties of polymer composite, and we
used supervised learning. Hence, 70% of the data was
used for training, while 30% was used for testing and
validation. The maximum number of epoch was set to
1,000. The epoch was set to 1,000 not for any theoret-
ical reasons but to ensure that there is sufficient num-
ber of iterations during the learning process. Also,
learning was fast at this level, and the optimum per-
formance was obtained in all cases when the epoch was
less than 50. The ANN training was done using the
Levenberg-Marquardt algorithm which performed bet-
ter than others.
Single network architecture was used in the study. The

network architecture consists of a single input unit, one
hidden layer with two hidden units (nodes) and one out-
put unit. We used the sigmoid transfer function in the
all the processing units in the hidden layer. The network
structure is shown in Figure 5. The input X to the neural
network is the filler content in percent.
The network design was based on the fact that a typ-

ical back-propagation network has an input layer, an
output layer, and at least one hidden layer (Anderson
and McNeill 1992). There is no theoretical limit on the
number of hidden layers, but typically there is just one
or two (Anderson and McNeill 1992). Some work has
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Figure 18 Flexural strength (experimental results and ANN predictions) at 150 μm and initial LDPE strength of 40 MPa. (a) Variation of
flexural strength with filler content. (b) Prediction of flexural strength (experimental vs ANN predictions).
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been done which indicates that a maximum of four layers
(three hidden layers and one output layer) are required to
solve problems of any complexity (Anderson and McNeill
1992). According to one of the rules of designing typical
back-propagation networks, if the process being modelled
is separable into multiple stages, then additional hidden
layer(s) may be required (Anderson and McNeill 1992).
Bearing these in mind, we limited the number of hidden
layers in our network to one.
The input-output relationship being modelled is uni-

variate which is quite simple, unlike complex multi-
variate relationships. Anderson and McNeill (1992)
stated that one of the rules of designing typical back-
propagation networks is that as the complexity in the
relationship between the input data and the desired
output increases, the number of the processing elements
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Figure 19 Flexural strength (experimental results and ANN prediction
flexural strength with filler content. (b) Prediction of flexural strength (expe
in the hidden layer should increase. Based on the rule for
determining the upper bound of processing elements in
the hidden layer (Anderson and McNeill 1992), we chose
a scaling factor of 2. This choice is based on the fact that
our training data is not noisy with an exact relationship of
the input to the output. Consequently, we determined the
upper bound of the processing units in the hidden
layer to be three. Hence, in accordance with this rule,
we chose two processing elements in our hidden layer
instead of three or more. Moreover, when we increased
the processing elements to more than two, we did not
obtain any improvement in our results. Also, when the
number of elements was reduced to one, the results
obtained were poorer than when the elements were
two. Hence, for better efficiency and model parsimony,
we stuck to two processing elements.
b
s) at 212 μm and initial LDPE strength of 40 MPa. (a) Variation of
rimental vs ANN predictions).
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Figure 20 Flexural strength (experimental results and ANN predictions) at 250 μm and initial LDPE strength of 40 MPa. (a) Variation of
flexural strength with filler content. (b) Prediction of flexural strength (experimental vs ANN predictions).
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Results and discussion
Prediction of the effect of filler content on the ultimate
tensile strength
Figures 6a, 7a, 8a and 9a show the effect of filler content
on the ultimate tensile strength (UTS) of date palm wood
flour/LDPE composite at 150-, 212-, 250- and 300-μm
particle sizes and initial LDPE ultimate tensile strength
of 12 MPa. As shown in the figures, increase in filler
content decreased the ultimate tensile strength. This
trend was equally observed in oil palm filled with poly-
propylene by Zaini et al. (1995). This trend was due to
weak chemical interaction between the filler and LDPE
phase (Felix and Gatenholm 1991). When the particle
size was 150 μm, as the filler content increased from
2% to 30%, the ultimate tensile strength of date palm
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Figure 21 Flexural strength (experimental results and ANN prediction
flexural strength with filler content. (b) Prediction of flexural strength (expe
wood flour/LDPE composite decreased from 9.85 to
9.48 MPa.
At 212 μm, the tensile strength of date palm wood

flour/LDPE composite decreased from 9.89 to 9.51 MPa.
At 250 μm, it decreased from 9.95 to 9.56 MPa. At 300 μm,
it decreased from 9.88 to 9.50 MPa. The slight decrease
in ultimate tensile strength in the entire composite
may be due to increase in interfacial area as a result of
addition of hydrophilic filler to hydrophobic matrix
which worsened the interfacial bonding between them
thereby decreasing the tensile strength. Generally, the
tensile strength of the composites decreased with in-
creasing filler loading due to the poor interfacial bond-
ing between the filler and the matrix polymer. The poor
bonding causes increased micro voids in the composites.
b
s) at 300 μm and initial LDPE strength of 40 MPa. (a) Variation of
rimental vs ANN predictions).



Table 4 Flexural strength prediction error summary

Grain size (μm) Correlation
coefficient R

Epoch Mean squared
error (MSE)

150 0.99869 14 0.00359860

212 0.99847 23 0.00322870

250 0.99821 10 0.00311260

300 0.99877 73 0.00055418
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The observation is in line with that of Yang et al. (2006)
in LDPE-wood flour system.
Figures 6b, 7b, 8b and 9b show the artificial neural

network predictions of the ultimate tensile strength of
date palm wood fibre/LDPE composite for grain sizes
of 150, 212, 250 and 300 μm. As the figures show, there
is very good agreement with the artificial neural network
predictions and experimental results with the correlation
coefficients greater than 0.99.
Table 1 shows the ANN prediction summary for ultimate

tensile strength. As shown in the table, the maximum
correlation coefficient is 0.99809, while the minimum
correlation coefficient is 0.99682. Hence, the ANN pre-
dictions are very good.

Prediction of the effect of filler content on the elongation
Figures 10a, 11a, 12a and 13a show the effect of filler
content on the elongation of date palm wood flour/LDPE
composite at 150-, 212-, 250- and 300-μm particle sizes
and initial LDPE of 90%. As shown in the figures, increase
in the filler content decreased the elongation. This trend
was due to low interfacial adhesion between the thermo-
plastic layer and the filler (Bledzki and Gassan 1999).
Similar trends were exhibited for wood flour-filled poly-
propylene composites (Berger and Stark 1997).
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Figure 22 Flexural modulus (experimental results and ANN prediction
of flexural modulus with filler content. (b) Prediction of flexural modulus (e
When the filler content increased from 2% to 30% at
a particle size of 150 μm, the elongation of date palm
wood flour/LDPE composite decreased from 10.50% to
6.70%. At 212 μm, it decreased from 10.80% to 7.35%. At
250 μm, it decreased from 10.90% to 7.55%. At 300 μm, it
decreased from 10.70% to 6.80%.
Figures 10b, 11b, 12b and 13b show the artificial neural

network predictions of the elongation of date palm wood
fibre/LDPE composite for grain sizes of 150, 212, 250
and 300 μm. As the figures show, with the correlation
coefficients greater than 0.99, there is very good agree-
ment with the artificial neural network predictions and
experimental results.
Table 2 shows the ANN prediction summary for elong-

ation. As shown in the table, the maximum correlation co-
efficient is 0.99835, while the minimum is 0.99430. Hence,
the ANN predictions are very good.

Prediction of the effect of filler content on the
tensile modulus
Figures 14a, 15a, 16a and 17a show the effect of filler con-
tent on the tensile modulus of date palm wood flour/LDPE
composite at 150-, 212-, 250- and 300-μm particle sizes and
initial LDPE of 0.4 GPa. As shown in the figures, increase in
the filler content increased the tensile modulus. This trend
was due to stiffness of the reinforcement which increases
with increase in filler content (Zaini et al. 1995).
When filler content increased from 2% to 30%, at

150 μm, the tensile modulus of date palm wood flour
composite increased from 0.83 to 1.28 GPa. At 212 μm, it
increased from 0.85 to 1.32 GPa. At 250 μm, it increased
from 0.88 to 1.36 GPa. At 300 μm, it increased from
0.84 to 1.30 GPa. The increase in tensile modulus could
be attributed to increase in stiffness of the composite
b
s) at 150 μm and initial LDPE modulus of 0.25 GPa. (a) Variation
xperimental vs ANN predictions).
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Figure 23 Flexural modulus (experimental results and ANN predictions) at 212 μm and initial LDPE modulus of 0.25 GPa. (a) Variation
of flexural modulus with filler content. (b) Prediction of flexural modulus (experimental vs ANN predictions).
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which increased with increase in filler content (Zaini
et al. 1995).
Figures 14b, 15b, 16b and 17b show the artificial neural

network predictions of the tensile modulus of date palm
wood fibre/LDPE composite for grain sizes of 150, 212,
250 and 300 μm. As the figures show, with the correlation
coefficients greater than 0.99, there is very good agree-
ment with the artificial neural network predictions and
experimental results.
Table 3 shows the ANN predictions summary for tensile

modulus. As shown in the table, the maximum correlation
coefficient is 0.99965, while the minimum is 0.99737.
Hence, the ANN predictions are very good.
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Figure 24 Flexural modulus (experimental results and ANN prediction
of flexural modulus with filler content. (b) Prediction of flexural modulus (e
Prediction of the effect of filler content on the
flexural strength
Figures 18a, 19a, 20a and 21a show the effect of filler con-
tent on the flexural strength of date palm wood flour/LDPE
composite at 150-, 212-, 250- and 300-μm particle sizes
and initial LDPE flexural strength of 40 MPa. As shown
in the figures, increase in the filler content of composite
increased the flexural strength.
When filler content increased from 2% to 30% at 150 μm,

the flexural strength of date palm wood flour/LDPE com-
posite increased from 42.95 to 45.80 MPa. At 212 μm, it
increased from 43.30 to 46.55 MPa. At 250 μm, it increased
from 43.63 to 46.66 MPa. At 300 μm, it increased from
b
s) at 250 μm and initial LDPE modulus of 0.25 GPa. (a) Variation
xperimental vs ANN predictions).
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Figure 25 Flexural modulus (experimental results and ANN predictions) at 300 μm and initial LDPE modulus of 0.25 GPa. (a) Variation
of flexural modulus with filler content. (b) Prediction of flexural modulus (experimental vs ANN predictions).
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43.02 to 45.93 MPa. This trend also was observed in wood
species-filled polypropylene by Brent (1996). The improve-
ment in flexural properties could be attributed to high
strength and modulus of the cellulose fibres.
Figures 18b, 19b, 20b and 21b show the artificial neural

network predictions of the flexural strength of date palm
wood fibre/LDPE composite for grain sizes of 150, 212, 250
and 300 μm. As the figures show, there is very good
agreement with the artificial neural network predictions
and experimental results.
Table 4 shows the ANN prediction summary for flexural

strength. As shown in the table, the maximum correlation
coefficient is 0.99877, while the minimum is 0.99821.
Hence, the ANN predictions are very good.

Effect of filler content on the flexural modulus
Figures 22a, 23a, 24a and 25a show the effect of filler
content on the flexural modulus of date palm wood
flour/LDPE composite at 150-, 212-, 250- and 300-μm
particle sizes and initial LDPE of 0.25 GPa. As shown
in the figures, increase in the filler content increased
the flexural modulus.
When filler content increase from 2% to 30%, at 150 μm,

the flexural modulus of date palm wood flour/LDPE
composite increased from 0.6 to 1.08 GPa. At 212 μm,
Table 5 Flexural modulus prediction summary

Grain size (μm) Correlation
coefficient R

Epoch Mean squared
error (MSE)

150 0.99535 10 0.00096335

212 0.99781 12 0.00035379

250 0.99934 10 0.00002759

300 0.99831 9 0.00014008
it increased from 0.63 to 1.16 GPa. At 250 μm, it in-
creased from 0.66 to 1.18 GPa. At 300 μm, it increased
from 0.62 to 1.13 GPa. The addition of filler content to
thermoplastics increased the modulus. This has been
observed with oil palm wood flour-filled polypropylene by
Zaini et al. (1995). The improvement in flexural modulus
could be attributed to high strength and modulus of the
cellulose fibres.
Figures 22b, 23b, 24b and 25b show the artificial neural

network predictions of the flexural modulus of date palm
wood fibre/LDPE composite for grain sizes of 150, 212,
250 and 300 μm. As the figures show, there is very good
agreement with the artificial neural network predictions
and experimental results.
Table 5 shows the ANN prediction summary for flexural

modulus. As shown in the table, the maximum correlation
coefficient is 0.99934, while the minimum is 0.99535.
Hence, the ANN predictions are very good.

Prediction of the effect of filler content on the Izod
notched impact energy
Figures 26a, 27a, 28a and 29a show the effect of filler con-
tent on the Izod notched impact energy of groundnut shell
and groundnut shell flour/LDPE composite at 150-, 212-,
250- and 300-μm particle sizes and initial LDPE of
1.1 kJ/m. As shown in the figures, increase in the filler
content increased the Izod notched impact energy. This
trend has similar reason with tensile modulus.
When filler content increased from 2% to 30% at 150 μm,

the Izod notched impact energy increased from 1.45 to
1.92 kJ/m. At 212 μm, it increased from 1.48 to 1.97 kJ/m.
At 250 μm, it increased from 1.51 to 2.00 kJ/m. At 300 μm,
it increased from 1.56 to 2.06 kJ/m. As the concentration
of the filler content increased, Izod notched impact energy
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Figure 26 Izod notched impact energy (experimental results and ANN predictions) at 150 μm and initial LDPE energy of 1.1 kJ/m. (a)
Variation of Izod impact energy with filler content. (b) Prediction of Izod impact energy (experimental vs ANN predictions).
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increased due to more energy required to propagate the
crack. Izod notch is a measure of crack propagation.
This is in line with that observed with wood polypropylene
composites (Stark 1997).
Figures 26b, 27b, 28b and 29b show the artificial neural

network predictions of the Izod notched impact energy
of date palm wood fibre/LDPE composite for grain sizes
of 150, 212, 250 and 300 μm. As the figures show, there
is very good agreement with the artificial neural network
predictions and experimental results.
Table 6 shows the ANN prediction summary for Izod

notched impact energy. As shown in the table, the
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Figure 27 Izod notched impact energy (experimental results and ANN
(a) Variation of Izod impact energy with filler content. (b) Prediction of Izod
maximum correlation coefficient is 0.99955, while the
minimum is 0.99911. Hence, the ANN predictions are
very good.

Conclusion
From the analysis in this work, we have seen that the
mechanical properties of polymer composite materials
depend on the percentage of the filler content. Tensile
properties of date palm wood flour/LDPE composites
are slightly affected by weight fractions of date palm
fibre. Generally, the neural network model predictions
were in very good agreement with experimental results
b
predictions) at 212 μm and initial LDPE energy of 1.1 kJ/m.
impact energy (experimental vs ANN predictions).
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Figure 28 Izod notched impact energy (experimental results and ANN predictions) at 250 μm and initial LDPE energy of 1.1 kJ/m. (a)
Variation of Izod impact energy with filler content. (b) Prediction of Izod impact energy (experimental vs ANN predictions).
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and hence could be used as substitute to costly time-
consuming experiments.
The ANN prediction was better than the results ob-

tained by Nwobi-Okoye et al. (2013) and Umeonyiagu
and Nwobi-Okoye (2013) who applied ANN for concrete
strength (flexural and tensile) prediction. The results are
similar to those obtained by Hassan et al. (2009) who
applied ANN for prediction of some physical properties
(porosity and density) and hardness of aluminium-copper/
silicon carbide composites. Also, the results are similar
to those obtained by Sterjovski et al. (2005) who applied
ANN for modelling the mechanical properties of steels
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Figure 29 Prediction of Izod notched impact energy (experimental re
1.1 kJ/m. (a) Variation of Izod impact energy with filler content. (b) Predic
in various applications and by Jiang et al. (2008) who used
it to predict the mechanical and wear properties of short
fibre reinforced polyamide composites.
Generally, the neural network models were bereft of

the messy mathematics and statistical analysis required
in building the regression model, while at the same time
giving good model predictions. Hence, it would be prefer-
able when the underlying mathematical structure behind
the model predictions is irrelevant to the modeller/analyst,
and model building is required quickly.
Determination of mechanical properties of materials

is very important in engineering designs. Poor designs
b
sults and ANN predictions) at 300 μm and initial LDPE energy of
tion of Izod impact energy (experimental vs ANN predictions).



Table 6 Izod notched impact energy prediction error
summary

Grain size (μm) Correlation
coefficient R

Epoch Mean squared
error (MSE)

150 0.99936 13 0.00002936

212 0.99911 23 0.00002470

250 0.99955 21 0.00001687

300 0.99914 13 0.00000237
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often lead to loss of lives and properties, and in
addition to these, the economy is impacted negatively
(AbdulQadir et al. 2011; Nigerian Institute for Oil Palm
Research 2008; Olajumoke et al. 2009; Arum 2008). Often,
poor composite mixtures and inadequate knowledge of
the role of polymer composite mixture properties to its
mechanical properties are to blame (Nwobi-Okoye et al.
2013; Umeonyiagu and Nwobi-Okoye 2013; Olajumoke
et al. 2009; Arum 2008). It is obvious that neural network
models will help in efficient and accurate determination of
mechanical properties of date palm wood floor/LDPE
polymer composite used in engineering applications.
Computational models using neural networks offer a

very promising solution to the problem of polymer com-
posite mechanical property prediction. Computational
models are simple because they do not involve complex
mathematical analysis. Hence, what the engineer needs
is a good and reliable computer software and a matching
hardware to do his analysis. The ubiquity of various
computing platforms ranging from desktop PCs, laptops,
palmtops, tablets, etc. means that such analysis is made
even easier.

Nomenclature, symbols and notations
Y experimentally determined property

Y
∧
network prediction

W neural network input weight
g network activation function
ai neural network input activations
hW network weighting function.
t time
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