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On the deformation of almost cylindrical
elastic beams
D. Ieşan1,2

Abstract

Background: The Saint-Venant problem for porous elastic cylinders is of interest both from the technical and
mathematical point of view. The intended applications of solution are to mechanics of bone and to some engineering
structures.

Method: This work investigates the Saint-Venant problem for almost prismatic bars made of an isotropic porous
material. We express the solution in terms of the solutions of two problems concerning the deformation of a right
cylinder.

Results and Conclusion: We use the method to study the extension of an almost prismatic conical frustum. It is
found that the displacement vector is a polynomial of two degree in the cartesian coordinates. The volume fraction
field depends linearly on the axial coordinate. The solution contains terms characterizing the influence of the material
porosity and the dependence on the lateral surface.
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Background
A generalization of the classical theory of elasticity is
the theory of elastic materials with voids established by
Nunziato and Cowin (1979) and Cowin and Nunziato
(1983). The intended application of the theory is to elas-
tic bodies with pores which are distributed throughout the
material. In the framework of the linear theory of isotropic
elastic materials with voids, the deformation of the right
cylinders has been the subject of various investigations.
Cowin and Nunziato (1983) have studied the pure bend-
ing of a cylinder made of a homogeneous material. The
problem of extension and bending for nonhomogeneous
porous elastic bodies has been investigated by Ciarletta
and Iesan (1993), Ieşan and Nappa (1994), Ieşan and Scalia
(2007), and Ieşan and Scalia (2009). A treatment of Saint
Venant’s problem for homogenous and isotropic porous
elastic cylinders has been presented by Dell’Isola and
Batra (1997), Ieşan and Quintanilla (1995), Ieşan (2009),
and Ieşan (2011).
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In the context of the classical elasticity, the mechani-
cal behavior of the noncylindrical elastic bars has been
studied in many papers (see, e.g., Dryden (2007), Zupan
and Saje (2006), You et al. (2002), and the references
therein). These bodies are of interest both from the
technical and mathematical point of view. The present
paper is concerned with the Saint-Venant problem for
almost cylindrical bars made of porous elastic materials.
In the classical elastostatics, the deformation of almost
cylindrical bars has been studied in various papers (see,
e.g., Bors (1973), Chirita (1983), Khatiashvili (1983b),
Khatiashvili (1983a), and the references therein). First,
we present the basic equations of the linear theory of
isotropic porous elastic solids and the formulation of
the problem. The next section is devoted to the solu-
tion of the Saint-Venant problem for almost cylindrical
bars. The problem is reduced to the solving of a problem
of Almansi type and to the Saint-Venant problem for a
right cylinder. In the next section we use the method to
solve the problem of extension of a conical frustum. The
solution is expressed in terms of solutions of some prob-
lems associated with the deformation of a right circular
cylinder.
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Formulation of the problem
In this paper, we consider the equilibrium theory of elastic
materials with voids. A rectangular cartesian coordinate
system Oxk(k = 1, 2, 3) is used. We shall employ the usual
summation and differentiation conventions: Greek sub-
scripts are understood to range over the integers (1, 2)
whereas Latin subscripts to the range (1, 2, 3); summa-
tion over repeated subscripts is implied and subscripts
preceded by a comma denote partial differentiation with
respect to the corresponding cartesian coordinate. We
denote by B the interior of a noncilindrical bar of length l,
with the ends located at x3 = 0 and x3 = l, and with the
lateral surface � defined by

F [x1 (1 − kx3) , x2 (1 − kx3)] = 0, x3 ∈ [0, l] . (1)

Here, k is a constant small enough for squares and
higher powers to be neglected. The bar B is called almost
cylindrical. We assume that B is a bounded regular region
(Gurtin (1972), Section 5). We denote by �1 the cross
section located at x3 = 0 and by �2 the cross section
located at x3 = l. We call ∂B the boundary of B and denote
by ni the components of the outward unit normal of ∂B.
The linear strain measure is defined by

eij = 1
2

(
ui,j + uj,i

)
, (2)

where ui is the components of the displacement vector.
Let tij be the stress tensor and let hi be the equilibrated
stress vector. The surface force and the equilibrated sur-
face force at a regular point of ∂B are given by

ti = tjinj, h = hjnj, (3)

respectively. Throughout this paper, we assume that the
body is homogeneous and isotropic. The constitutive
equations are given by Cowin and Nunziato (1983)

tij = λerrδij + 2μeij + bϕδij,
hj = αϕj, g = −berr − ξϕ, (4)

where δij is the Kronecker delta, ϕ is the volume distri-
bution function, g is intrinsic equilibrated body force, and
λ,μ, b,α, and ξ are constitutive constants.
The equilibrium equations of porous bodies, in the

absence of the body loads, are given by

tji,j = 0, hj,j + g = 0. (5)

We assume that the lateral surface is free from tractions.
Thus, we have the following conditions

tkink = 0, hjnj = 0 on �. (6)

Let R = (R1,R2,R3) and M = (M1,M2,M3) be
prescribed vectors representing the resultant force and
resultant moment about O of the tractions acting on �1.
On �2, there are tractions applied so as to satisfy the

equilibrium conditions of the body. On the end located at
x3 = 0, we have the conditions

∫

�1
t3jda = −Rj,

∫

�1
εijkxjt3kda = −Mi, (7)

where εijk is the alternating symbol. We note that there
is no contribution of the equilibrated surface force in
the resultant force and resultant moment (Ciarletta and
Iesan 1993). The elastic potential corresponding to the
considered continuum is

2W = λerrejj + 2μeijeij + bϕ + ξϕ2 + αϕ,jϕ,j. (8)

Throughout this paper, we assume that W is a posi-
tive definite quadratic form in the variables eij,ϕ, and ϕ,j.
Then, following Cowin and Nunziato (1983)

μ > 0, α > 0, ξ > 0, 3λ + 2μ > 0, (3λ + 2μ)ξ > 3b2.
(9)

Methods
In this section, we prove that the problem can be reduced
to the study of the deformation of a right cylinder. Let us
consider the transformation

y1 = x1 (1 − kx3) , y2 = x2 (1 − kx3) , y3 = x3. (10)

By Eq. (10), the domain B is mapped into the right
cylinder D, of length l, with the lateral surface S given by

F (y1, y2) = 0, y3 ∈ [0, l] . (11)

From Eq. (10), we obtain

x1 = y1
(
1 + ky3

)
, x2 = y2

(
1 + ky3

)
, x3 = y3. (12)

If f is a function of point of class C1, then
∂f
∂x1

= (
1 − ky3

) ∂f
∂y1

,
∂f
∂x2

= (
1 − ky3

) ∂f
∂y2

,

∂f
∂x3

= ∂f
∂y3

− k
(
y1

∂f
∂y1

+ y2
∂f
∂y2

)
. (13)

Let us introduce the notation

f;j = ∂f
∂yj

.

We seek the solution of the Saint-Venant problem in the
form

ui = u(1)
i + ku(2)

i , ϕ = ϕ(1) + kϕ(2), (14)

where u(α)
i and ϕ(α), (α = 1, 2), are unknown functions.

We denote

e(α)
ij = 1

2
(u(α)

i;j + u(α)
j;i ). (15)

It follows from Eqs. (2), (13), and (15) that

eij = e(1)ij + ke(2)ij + kEij,

ϕ,j = ϕ
(1)
;j + kϕ(2)

;j + kζj, (16)
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where

E11 = −y3e(1)11 , E22 = −y3e(1)22 , E33 = −yρu(1)
3;ρ ,

E12 = E21 = −y3e(1)12 , E13 = E31 = −1
2

(
yρu(1)

1;ρ + y3u(1)
3;1

)
,

E23 = E32 = −1
2

(
yρu(1)

2;ρ + y3u(1)
3;2

)
,

ζ1 = −y3ϕ(1)
;1 , ζ2 = −y3ϕ(1)

;2 , ζ3 = −yρϕ;ρ . (17)

In view of Eq. (16), from Eq. (4), we obtain

tij = t(1)ij + kt(2)ij + kPij, (18)

hj = h(1)
j + kh(2)

j + kHj, g = g(1) + kg(2) + kG,

where we have used the notations

t(ρ)
ij = λe(ρ)

rr δij + 2μe(ρ)
ij + bϕ(ρ)δij, (19)

h(ρ)
i = αϕ

(ρ)
;i , g(ρ) = −be(ρ)

rr − ξϕ(ρ), (ρ = 1, 2)

and

Pij = λErrδij + 2μEij, (20)

Hα = −y3ϕ(1)
3;α , H3 = yρϕ(1)

;ρ , G = −bErr .

The equilibrium equations, to a second order approxi-
mation, reduce to the following systems

t(1)ji;j = 0, h(1)
j;j + g(1) = 0, (21)

and

t(2)ji;j + Pji;j − y3t(1)ρi;ρ − yρt(1)3i;ρ = 0,

h(2)
j;j + g(2) + Hj;j − y3h(1)

α;α + G = 0, (22)

on D.
If the direction cosines of the exterior normal to the

lateral surface S are (N1,N2, 0), then, we have

n1 = N1, n2 = N2, n3 = −kyρNρ . (23)

It follows from Eqs. (18) and (23) that the boundary
conditions (6) are satisfied if we have

t(1)αi Nα = 0, h(1)
α Nα = 0 on S (24)

and

t(2)αi Nα = −PαiNα + yρNρt(1)i3 ,

h(2)
α Nα = −HρNρ + h(1)

3 yρNρ , on S. (25)

We denote by �∗
1 the cross section of D located at y3 = 0.

In view of Eqs. (10) and (18), the conditions (7) reduce to
∫

�∗
1

t(1)3i da = −Ri,
∫

�∗
1

εijkyjt(1)3k da = −Mi, (26)

and
∫

�∗
1

t(2)3i da = 0,
∫

�∗
2

εijkyjt(2)3k da = 0. (27)

We note that the functions u(1)
i and ϕ(1) satisfy the

equations and the boundary conditions in the Saint-
Venant problem characterized by Eqs. (15), (19), and (21)
on D and the boundary conditions (24) and (26). The
functions u(1)

i and ϕ(1) can be determined by using the
method given by Ciarletta and Iesan (1993). To find the
functions u(2)

i and ϕ(2), we have to solve Eqs. (15), (19),
and (22) on D and the boundary conditions (25) and (27).
In this problem, the body loads and the surface tractions
on the lateral surface S are, in general, different from
zero. The functions u(2)

i and ϕ(2) satisfy a problem of
Almansi type, in which the body loads and surface forces
depend on the functions u(1)

i and ϕ(1). A general method
to solve the Almansi problem has been presented by
Ieşan and Scalia (2009).

Results and discussion
In this section, we use the above method in order to study
the extension of a conical frustum made of a porous elas-
tic material. We consider that the domain B is the interior
of a circular cone frustum, bounded by plane ends per-
pendicular to the axis of the cone (Fig. 1). We choose the
rectangular cartesian coordinate frame such that x3-axis
can be the axis of the cone. We assume that the ends �1
and�2 are circles of radius r1 and r2, respectively, and that
r1 < r2. The lateral surface � is defined by

x21 + x22 = r21
(
1 + r−1

1 x3tg θ
)2

, x3 ∈ [0, l] , (28)

where θ is the angle between the generator and the axis of
the cone.
We denote

k = 1
r1
tg θ . (29)

We suppose that k is small enough for squares and high
powers to be neglected. Then, Eq. (28) can be expressed as

x21 (1 − kx3)2 + x22 (1 − kx3)2 = r21, x3 ∈ [0, l] . (30)

The surface S is described by

y21 + y22 = r21, y3 ∈ [0, l] . (31)

Thus, the domain D is a right circular cylinder,

D = {
(y1, y2, y3) , y21 + y22 < r21, 0 < y3 < l

}
.

We assume that Rα = 0, R3 �= 0 and Mj = 0. In this
case, the conditions (26) reduce to
∫

�∗
1

t(1)3α da = 0,
∫

�∗
1

xαt(1)33 da = 0,
∫

�∗
1

εαβ3xαt(1)β3 da = 0,

(32)

and
∫

�∗
1

t(1)33 da = −R3. (33)
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Fig. 1 A conical frustum

Let us determine the functions u(α)
i and ϕ(α), (α = 1, 2).

We seek the functions u(1)
j and ϕ(1) in the form

u(1)
α = a3C1yα , u(1)

3 = a3y3, ϕ(1) = a3C2, (34)

where Cα and a3 are unknown constants. It follows from
Eqs. (34), (15), and (19) that

t(1)11 = t(1)22 =[λ (1 + 2C1) + 2μC1 + bC2] a3, t(1)12 = 0,

t(1)33 = (λ + 2μ + 2λC1 + bC2) a3, t(1)α3 = 0, (35)

g(1) = − [(1 + 2C1) b + ξC2] a3, h(1)
j = 0.

The boundary conditions (24) are satisfied only if

2(λ + μ)C1 + bC2 = −λ. (36)

The equilibrium Eq. (21) reduces to

2bC1 + ξC2 = −b. (37)

It follows from Eqs. (36) and (37) that

C1 = λξ − b2

2b2 − 2ξ(λ + μ)
, C2 = bμ

b2 − ξ(λ + μ)
. (38)

We note that the conditions (9) imply that b2 − ξ(λ+μ)

is different from zero. The conditions (32) are identically
satisfied. From Eqs. (33) and (35), we find the constant a3,

a3 = R3
[
b2 − ξ(λ + μ)

]

A
[
(λ + 2μ)(λ + μ)ξ − 3μb2 − λ2ξ

] , (39)

where A is the area of the cross section �∗
1 .

Thus, the functions u(1)
i and ϕ(1) are determined. Let

us study the Almansi problem characterized by Eqs. (15),
(19), and (22) on D and the boundary conditions (25) and
(27). We note that in the case of extension, we have

t(1)αβ = 0, t(1)33 = (λ + 2μ + 2λC1 + bC2) a3,

h(1)
i = 0, g(1) = 0. (40)

From Eqs. (34) and (17), we find that

E11 = E22 = −a3C1y3, Eα3 = −1
2
yαa3C1,

E12 = E33 = 0, ξi = 0. (41)

In view of Eqs. (20) and (41), we get

P11 = P22 = −2(λ + μ)a3C1y3, P12 = 0,
P33 = −2λC1a3y3, Pα = −μC1a3yα , (42)
Hj = 0, G = 2bC1a3y3.

It is a simple matter to see that Eq. (22) reduces to

t(2)jα;j = 0, t(2)j3;j − P = 0, (43)

h(2)
j;j + g(2) + G = 0, (44)

on D, where

P = 2(λ + μ)C1a3. (45)

The direction cosines of the exterior normal to the sur-
face (31) are given by Nα = yαr−1

1 , N3 = 0. In view of
Eqs. (40) and (42), the boundary conditions (25) become

t(2)ραNρ = Pr−1
1 yα , t(2)ρ3Nρ = P0,

h(2)
ρ Nρ = 0 for r = r1, (46)

where

P0 = [λ + 2μ + (2λ + μ)C1 + bC2] r1a3. (47)

Let us determine the functions u(2)
i and ϕ(2) which sat-

isfy Eqs. (15), (19), (43), and (44) on D, and the boundary
conditions (46) and (27). First, we determine the functions
u∗
i and ϕ∗ which satisfy Eqs. (15), (19), (43), and (44) on
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D and the boundary conditions on the lateral surface (46).
We seek these functions in the form

u∗
1 = A1y1 + B1y1y3, u∗

2 = A1y2 + B1y2y3,

u∗
3 = 1

2
B3y23 + �(y1, y2), ϕ∗ = A2 + B2y3, (48)

on D, where Aα and Bk are unknown constants, and � is
an unknown function. The strain tensor e∗ij, corresponding
to the displacements u∗

j , is

e∗11 = e∗22 = A1 + B1y3, e33 = B3y3,
e12 = 0, 2eα3 = �;α + B1yα .

The stress tensor t∗ij , the equilibrated stress vector h∗
j ,

and the intrinsic equilibrated body force g∗ associated
with the deformation described by Eq. (48) are given by

t∗11= t∗22=2(λ+μ)A1+bA2+[ 2(λ+μ)B1+bB2 + λB3] y3,
t∗33 = 2λA1 + bA2+[ 2λB1 + bB2 + (λ + 2μ)B3] y3, (49)
t∗12 = 0, t∗α3 = μ

(
�;α + B1yα

)
,

h∗
α =0, h∗

3=B2, g∗ =−2bA1−ξA2−(2bB1+ξB2+bB3) y3.

Equation (44) is satisfied if

2bA1 + ξA2 = 0 (50)

and

2bB1 + ξB2 + bB3 = 2bC1a3. (51)

The first two conditions of Eq. (46) reduce to

2(λ + μ)A1 + bA2 = P, (52)

and

2(λ + μ)B1 + bB2 + λB3 = 0. (53)

It follows from Eqs. (50) and (52) that

A1 = Pξ

2
[
ξ(λ + μ) − b2

] , A2 = − bP
ξ(λ + μ) − b2

. (54)

In view of Eq. (49), the equations of equilibrium (43)
reduce to

μ�� = P − 2(λ + μ)B1 − bB2 − (λ + 2μ)B3, (55)

on �∗
1 , where �U = U;αα . The third boundary condition

of Eq. (46) becomes

μ�;αNα = P0 − B1μyρNρ , for r = r1. (56)

The necessary and sufficient condition to solve the Neu-
mann problem, (55) and (56), is

2λB1 + bB2 + (λ + 2μ)B3 = �, (57)

where

� = P − 2r−1
1 P0 = 2a3 (λ + 2μ + λC1 + bC2) . (58)

The constants Bk are determined by the system (50),
(53), and (57). We obtain

B1 = 1
D

[
(b2 − ξλ)� − 4μb2a3C1

]
,

B2 = 2
D

[
2ba3(λ + μ)(λ + 2μ)C1 − μb� − 2λ2ba3C1

]
,

(59)

B3 = 2
D

{
�

[
ξ(λ + μ) − b2

] − 2μb2a3C1
}
,

where

D = 2μ
[
(3λ + 2μ)ξ − 3b2

]
. (60)

We note that the relations (9) imply thatD �= 0. The last
condition from Eq. (46) is identically satisfied.
The solution of the boundary value problem (55) and

(56) is given by

� = 1
4μ

[P − 2(λ + μ)B1 − bB2 − (λ + 2μ)B3] r2, (61)

where r2 = yαyα .
We seek the functions u(2)

i and ϕ(2) in the form

u(2)
i = u∗

i + vi, ϕ(2) = ϕ∗ + ψ . (62)

It is a simple matter to see that the functions vi and ψ

must satisfy the equilibrium equations in the absence of
the body loads and the conditions on the lateral surface
S, in the absence of superficial forces. Let sij be the stress
tensor corresponding to the displacements vi and volume
distribution functionψ . It follows from Eqs. (49), (61), and
(62) that the conditions (27) reduce to
∫

�∗
s3αda = 0,

∫

�∗
1

s33da = −R∗
3,

∫

�∗
1

εijkyjs3kda = 0

(63)

where

R∗
3 = (2λA1 + bA2)A. (64)

We conclude that vi andψ satisfy a problem of extension
with the axial force R∗

3. These functions are given by

vα = d3C1yα , v3 = d3y3, ψ = d3C2, (65)

where Cα is defined by Eq. (38) and

d3 = R∗
3
[
b2 − ξ(λ + μ)

]

A
[
(λ + 2μ)(λ + μ)ξ − 3μb2 − λ2ξ

] . (66)

It follows from Eqs. (10), (14), (34), (62), and (65) that the
solution of the problem of extension of the porous conical
frustum is given by

uα = xα [a3C1 + k (A1 + d3C1) + k(B1 − a3C1)x3] ,

u3 = (a3 + kd3) x3 + 1
2
kB3x23 + kQxαxα , (67)

ϕ = (a3 + kd3)C2 + k (A2 + B2x3) , (x1, x2, x3) ∈ B,
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where we have used the notation

Q = 1
2μ

[(λ + μ)C1a3 − μB3] .

The cartesian coordinate frame consists of the
orthonormal basis (e1, e2, e3) and the origin O. Let
R3 = −F , where F is a positive constant. In this case, the
resultant force of the tractions acting on the end located
at x3 = l is Fe3 and the point O is fixed. Let xi be the
coordinates of the point X0 in the reference configuration,
and let ξi be the coordinates of the corresponding point X
in the deformed configuration. Then, we have ξi = xi+ui,
and from Eq. (67), we obtain

ξα = (1 + T1 + T2x3) xα ,
ξ3 = (1 + �1) x3 + �2x23 + kQxαxα , (68)

where

T1 = a3C1 + k (d3C1 + A1) , T2 = k (B1 − a3C1) ,

�1 = a3 + kd3, �2 = 1
2
kB3. (69)

The point Y0 which, prior to deformation, had the coor-
dinates (0, 0, l) goes into point Y from the deformed
configuration. From Eq. (68), we find that the point Y has
the coordinates (0, 0, l∗) where

l∗ = (1 + �1 + �2l) l. (70)

We note that in the classical elasticity, the value of l∗ for
a homogeneous right cylinder is (1 + F/EA)l, where E is
Young’s modulus andA is the area of the cross section. Let
us choose magnesium crystal as the hypothetical mate-
rial for which the values of the constitutive coefficients
are (Bachher, 2015)

λ = 2.17 × 1010N · m−1,μ = 3.278 × 1010N · m−1,
α = 3.688 × 10−5N , b = 1.13849 × 1010N · m2,
ξ = 1.475 × 1010N · m−2.

If R = −e3 and k = 5.10−1, then from Eq. (70), we get

l∗ = (1.01063 + 0.00011l)10−6l.

Let us consider a circle (C) of radius ρ, located at the
plane x3 = η, where ρ and η are given constants. It fol-
lows from Eq. (68) that the image of (C) in the deformed
configuration is the circle

ξ21 + ξ22 = ρ2 (1 + T1 + T2c)2 , (71)

located at the plane ξ3 = (1 + �1) η + �2η2 + kQρ2. The
relation (71) can be used to describe the deformation of
the surface S. Let us assume that r1 =10 mm. We con-
sider the circle of radius r1 located at the plane x3 = c. Let
(�) be the image of this circle in the deformed configura-
tion. We denote by R(c) the radius of (�). The variation of
R(c) with respect to variable c is presented in Fig. 2. The

Fig. 2 Variation of R(c)

material parameters used are the same as in the previous
example.
We note that in the case of the problem of extension of a

right cylinder, the displacements and the volume fraction
field depend on the coordinates xi at most linearly.

Conclusions
The results established in this paper can be summarized
as follows:

a) We have studied the Saint-Venant problem for an
almost cylindrical bar made of a porous elastic
material. The problem was reduced to the solving of
a problem of Saint-Venant type for a right cylinder D
and to the problem of Almansi for D.

b) We have used the above method to investigate the
behavior of a conical frustum subjected to extension.
In this case, the problem reduces to a problem of
Almansi type for a right circular cylindrical. The
displacement vector field and the volume fraction
field have been determined. The displacement vector
is a polynomial of two degree in the cartesian
coordinate. The volume fraction field depends
linearly on the axial coordinate.

c) The salient feature of the solution of the problem of
extension is that the displacement vector field and
the stresses contain new terms characterizing the
influence of the material porosity, and their values
are therefore modified from the values predicted by
the classical elasticity.
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Ieşan, D, & Scalia, A (2007). On the deformation of functionally graded porous
elastic cylinders. J Elasticity, 87, 147–159.
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