Skip to main content

Table 4 Summary of experimental forced convection studies of heat exchangers for various nanofluids

From: A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids

Researcher

Nanofluid

Method of nanofluid preparation

Particle size (nm)

Particle volume concentration (vol.%)

Type of heat exchanger

Flow Regime (Range of reynolds number)

Heat transfer enhancement mechanisms

Duangthongsuk et al. (Duangthongsuká…Ÿ)

TiO2/water

Ultrasonic vibration

21

0.2

Horizontal double tube counter-flow

Turbulent (4000–18000)

Increase with the increase of particle volume concentration and Reynolds number

Duangthongsuk et al. (2010)

TiO2/water

Ultrasonic vibration

21

0.2, 0.6, 1.0, 1.5 and 2.0

Horizontal double tube counter-flow

Turbulent (4000–18000)

Increase with the increase of particle volume concentration and Reynolds number

Sajadi et al. (2011)

TiO2/water

Ultrasonic cleaning

30

0.05, 0.1, 0.15, 0.20 and 0.25

Horizontal Tube

Fully-developed Turbulent (5000–30,000)

Dispersion of suspended nanoparticles

Arani et al. (2013)

TiO2/water

Ultrasonic vibration

10, 20, 30 and 50

1, 1.5 and 2

Horizontal double tube counter-flow

Turbulent (9000–49,000)

Due to increase in particle volume concentration and Reynolds number, the Nusselt number was increased

Pandey et al. (2012)

Al2O3/water

Ultrasonic Processing

40-50

2, 3 and 4

Corrugated plate

Turbulent

Rise in Reynolds and Peclet number and with fall in nanofluid concentration

Wu et al. (2013)

γ-Al2O3/water

Ultrasonic vibration

40

0.78, 2.18, 3.89, 5.68 and 7.04 (wt.%)

Double pipe helical

Laminar and Turbulent (1000–10,000)

Nanofluid property and flow velocity effect

Darzi et al. (2013)

Al2O3/water

Ultrasonic vibration

20

0.25, 0.5 and 1

Double tube

Turbulent (5000–20,000)

Increasing the Reynolds number and concentration of nanoparticles

Khedkar et al. (2013)

Al2O3/water

Sonication, magnetic stirring

-

2- 3

Concentric tube

Laminar and turbulent (1000–5000)

Increase in particle volume concentration.

Tayal et al. (2999)

Al2O3/water

-

 

0.3, 0.5, 0.7, 1 and 2

Shell and tube

Turbulent (4\( \times \)105-18\( \times \)105)

Increase in mass flow rate and particle volume concentration.

Kumaresan et al. (2012)

*MWCNT/Water (70): EG (30)

Ultrasonication

*d=30-50 l=10-20 μm

0.15, 0.30 and 0.45

Tubular

Laminar and turbulent (1000–6000)

Particle rearrangement, the very high aspect ratio and postponing the boundary layer development due the movement of the carbon nanotubes at quicker frequency

Kumaresan et al. (2013)

*MWCNT/Water (70): EG (30)

Dispersion

*d=30-50 l=10-20 μm

0.15, 0.30, 0.45 and 0.1

Tubular

Laminar and turbulent (500–5500)

Particle migration effect not allow to develop thermal boundary layer at the faster rate

Kannadasan et al. (2012)

CuO/Water

Ultrasonic bath

 

0.1 and 0.2

Helical coil tube

Turbulent

(i)Helically coiled heat exchanger, (ii) For higher concentration of nanofluids, the enhancement in internal Nusselt numbers is higher

Godson et al. (2011)

Silver/Water

Ultrasonic vibration

80

0.3- 0.9

Tube in Tube

Laminar, transition and turbulent (900–12000)

Suspension of nanoparticles

Godson et al.

Ag/Water

Ultrasonic vibration

54

0.01, 0.03 and 0.04

Shell and tube

Turbulent (5000–25,000)

Increase in particle volume concentration

Yang et al. (2005)

Graphite/automatic transmission fluid Graphite/synthetic base oil

-

-

2, 2.5 (wt. %) 2 (wt. %)

Horizontal tube

Laminar (5–110)

Nanoparticles increased the static thermal conductivities of the fluid significantly at low weight fraction loadings

Zamzamian et al. (2011)

*Al2O3/EG CuO/EG

Magnetic stirring and ultrasonic irradiation

20

0.1, 0.5, and 1.0 (wt. %) 0.1, 0.3, 0.5, 0.7 and 1.0 (wt. %)

Double-pipe Plate

Turbulent

Effects of particle concentration and operating temperature enhancement

Farajollahi et al. (2010)

γ-Al2O3/water TiO2/water

-

25 15

0.3, 0.75, 1, and 2 0.15, 0.3, 0.5, and 0.75

Shell and tube

Turbulent

Own superior heat transfer behaviorfor the smaller and greater volume concentrations

Maré et al. (2011)

γ-Al2O3/water *CNT/water

Purchased- nanotech A1121W, AquacylMSDS

37 *d=9-10, l=2 μm

1, 0.55

Plate

Laminar (20–200)

Effect of temperature on viscosity and effect of Reynolds number on convective heat transfer coefficient

Tiwari et al. (2013)

CeO2/water Al2O3/water TiO2 /water SiO2/water

Ultrasonic vibration

30 45 - 10

0.5, 0.75, 1.0, 1.25, 1.5, 2.0 and 3

Plate

Laminar and Turbulent

Optimum volume concentration CeO2/water nanofluid owns the superior performance followed by TiO2/water, Al2O3/water and finally SiO2/water for testing operating conditions.

  1. CNT-Carbon nanotubes, MWCNT- Multi-walled CNT, EG- Ethylene glycol, d-diameter of nanoparticle, l- length of nanoparticle.