Bai, J. W., Liu, P. P., Zhu, Y. M., et al. (2013). Coherent precipitation of copper in Super 304H austenite steel. J Mater Sci Eng A, 584, 57–62.
Article
Google Scholar
Bonollo, F., Tiziani, A., Tovo, R., et al. (2004). Superaustenitic stainless steels: the microstructure and fatigue strength of welded joints. J Weld Int, 18, 24–30.
Article
Google Scholar
Brooks, J. A., & Thompson, A. W. (1991). Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. J Int Mater Rev, 36, 16–44.
Article
Google Scholar
Brooks, J. A., West, A. J., & Thompson, A. W. (1983a). Effect of weld composition and microstructure on hydrogen assisted fracture of austenitic stainless steels. J Metall Trans A, 14, 75–84.
Article
Google Scholar
Brooks, J. A., Williams, J. C., & Thompson, A. W. (1983b). Microstructural origin of the skeletal ferrite morphology of austenitic stainless steel welds. J Metall Trans A, 14A, 1271–1281.
Article
Google Scholar
Brozda, J. (2007). New generation austenitic steels used in supercritical power industry plant. J Welding International, 21, 512–520.
Article
Google Scholar
Carinci, G. M. (1994). Grain boundary segregation of boron in an austenitic stainless steel. J Appl Surf Sci, 76, 266–271.
Article
Google Scholar
Choudhary, B. K., & Rao Palaparti, D. P. (2012). Comparative tensile flow and work hardening behaviour of thin section and forged thick section 9Cr-1Mo ferritic steel in the framework of voce equation and Kocks-Mecking approach. Journal of Nuclear Materials, 430, 72–81.
Article
Google Scholar
Darja Steiner, P., Grega, K., Miran, P., et al. (2011). Differential scanning calorimetry study of the solidification sequence of austenitic stainless steel. Journal of Thermal Analysis and Calorimetry, 105, 251–257.
Article
Google Scholar
David, S. A., Siefert, J. A., & Feng, Z. (2013). Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. J Sci Technol Weld Joining, 18, 632–651.
Google Scholar
Elmer, J. W., Allen, S. M., & Eagar, T. W. (1989). Microstructural development during solidification of stainless steel alloys. J Metall Trans A, 20, 2117–2131.
Article
Google Scholar
Ha, V. T., & Jung, W. S. (2012). Creep behavior and microstructure evolution at 750 °C in a new precipitation strengthened heat resistant austenitic stainless steel. J Mater Sci Eng A, 558, 103–111.
Article
Google Scholar
Hara, T., Asahi, H., Uemori, R., et al. (2004). Role of combined addition of niobium and boron and of molybdenum and boron on hardnenability in low carbon steels. J ISIJ Int, 44, 1431–1440.
Article
Google Scholar
Hoffman, J. P., & ASM, D. j. (1989). The distribution of boron in stainless steels as revealed by a nuclear technique. J S Afr Inst Min Metal, 89, 81–87.
Google Scholar
Hunter, A., & Ferry, M. (2002). Phase formation during solidification of AISI 304 austenitic stainless steel. J Scripta Mater, 46, 253–258.
Article
Google Scholar
Indrani, S., Amankwah, E., Kumar, N. S., et al. (2011). Microstructure and mechanical properties of annealed SUS 304H austenitic stainless steel with copper. J Mater Sci Eng A, 528, 4491–4499.
Article
Google Scholar
Karlsson, L., Andren, H. O., & Nord, H. (1982). Grain boundary segregation in an austenitic stainless steel containing boron - an atom probe study. J Scripta Metallurgica, 16, 297–302.
Article
Google Scholar
Kim, M. Y., Kwak, S. C., Choi, I. S., et al. (2014). High-temperature tensile and creep deformation of cross-weld specimens of weld joint between T92 martensitic and Super304H austenitic steels. J Mater Character, 97, 161–168.
Article
Google Scholar
Li, X. M., Zou, Y., Zhang, Z. W., & Zou, Z. D. (2010). Microstructure evolution of a novel Super304H steel aged at high temperatures. J Mater Trans, 51, 305–309.
Article
Google Scholar
Shu Ping, T., Zhen Hua, W., Shi Chang, C., et al. (2010). Hot deformation behavior of Super304H austenitic heat resistant steel. J Miner Metall Mater, 17, 167–172.
Article
Google Scholar
Srinivasan, G., Bhaduri, A. K., Albert, S. K., et al. (2012). Effect of phosphorous and silicon on hot cracking susceptibility of 14Cr-15Ni-2.3Mo Ti-modified fully austenitic stainless steel. J Weld World, 56, 2–13.
Article
Google Scholar
Thomas, B. G. (2013). Recent Advances in Steels for Coal Fired Power Plant: A Review. J Trans Indian Inst Met, 66, 631–640.
Article
Google Scholar
Valiente Bermejo, M. A. (2012). Henry Granjon Prize Competition 2012 Winner Category B: Materials Behaviour and Weldability Influence of the [Creq + Nieq] alloy level on the transition between solidification modes in austenitic stainless steel weld metal. J Weld World, 56, 2–14.
Article
Google Scholar
Vekeman, J., Huysmans, S., & De Bruycker, E. (2014). Weldability assessment and high temperature properties of advanced creep resisting austenitic steel DMV304HCu. J Weld World, 58, 873–882.
Article
Google Scholar
Villafuerte, J. C., & Kerr, H. W. (1990). Grain structures in gas tungsten-arc welds of austenitic stainless steels with ferrite primary phase. J Metall Trans A, 21, 979–986.
Article
Google Scholar
Viswanathan, R., Henry, J. F., Tanzosh, J., et al. (2005). U.S. program on materials technology for ultra-supercritical coal power plants. Journal of Materials Engineering and Performance, 14, 281–292.
Article
Google Scholar
Yang, H., Peng, F., Miao, X., et al. (2006). Investigation of the aging behavior on boiler steel tube Super304H. J Press Equip Syst, 4, 96–99.
Google Scholar