Abd-Alla, A. M., Abo-Dahab, S. M., & Hammad, H. A. (2011). Propagation of Rayleigh waves in generalized magnetothermoelastic orthotropic material under initial stress and gravity field. *Applied Mathematical Modelling, 35*, 2981–3000.

Article
MathSciNet
MATH
Google Scholar

Abd-Alla, A. M., Abo-Dahab, S. M., Hammad, H. A., & Mahmoud, a. S. (2011). On generalized magneto-thermoelastic Rayleigh waves in a granular medium under the influence of a gravity field and initial stress. *Journal of Vibration and Control, 17*(1), 115–128.

Article
MathSciNet
MATH
Google Scholar

Abd-Alla, A. M., & Ahmed, S. M. (1996). Rayleigh waves in an orthotropic thermoelastic medium under gravity and initial stress. *Earth, Moon, and Planets, 75*, 185–197.

Article
MATH
Google Scholar

Abouelregal, A. E. (2011). Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model. *International Journal of Engineering Science, 49*, 781–791.

Article
MathSciNet
MATH
Google Scholar

Biswas, S., Mukhopadhyay, B., & Shaw, S. (2017). Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. *Journal of Thermal Stresses, 40*(4), 403–419.

Article
Google Scholar

Chauthale, S., & Khobragade, N. W. (2017). Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses. *Global Journal of Pure and Applied Mathematics, 13*, 7505–7527.

Dhaliwal, R. S., & Sherief, H. H. (1980). Generalized thermoelasticity for anisotropic media. *Quarterly of Applied Mathematics, XXXVII*(1), 1–8.

Article
MathSciNet
MATH
Google Scholar

Ezzat, M., & AI-Bary, A. (2016). Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature. *International Journal of Applied Electromagnetics and Mechanics, 50*(4), 549–567.

Article
Google Scholar

Ezzat, M., & AI-Bary, A. (2017). Fractional magneto-thermoelastic materials with phase lag Green-Naghdi theories. *Steel and Composite Structures, 24*(3), 297–307.

Google Scholar

Ezzat, M. A., El-Karamany, A. S., & El-Bary, A. A. (2017). Two-temperature theory in Green–Naghdi thermoelasticity with fractional phase-lag heat transfer. *Microsystem Technologies- Springer Nature, 24*(2), 951–961.

Article
Google Scholar

Ezzat, M. A., El-Karamany, A. S., & Ezzat, S. M. (2012). Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer. *Nuclear Engineering and Design (Elsevier), 252*, 267–277.

Article
Google Scholar

Green, A., & Naghdi, a. P. (1992). On undamped heat waves in an elastic solid. *Journal of Thermal Stresses, 15*(2), 253–264.

Article
MathSciNet
Google Scholar

Green, A., & Naghdi, P. (1993). Thermoelasticity without energy dissipation. *Journal of Elasticity, 31*(3), 189–208.

Article
MathSciNet
MATH
Google Scholar

Hassan, M., Marin, M., Ellahi, R., & Alamri, S. (2018). Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. *Heat Transfer Research, 49*(18), 1837–1848. https://doi.org/10.1615/HeatTransRes.2018025569.

Article
Google Scholar

Kumar, R., & Gupta, V. (2015). Effect of phase-lags on Rayleigh wave propagation in thermoelastic medium with mass diffusion. *Multidiscipline Modeling in Materials and Structures, 11*, 474–493.

Article
Google Scholar

Kumar, R., & Kansal, T. (2008a). Effect of rotation on Rayleigh waves in an isotropic generalized thermoelastic diffusive half-space. *Archives of Mechanics, 65*(5), 421–443.

MathSciNet
MATH
Google Scholar

Kumar, R., & Kansal, T. (2008b). Rayleigh waves in transversely isotropicthermoelastic diffusive half-space. *Canadian Journal of Physics, 86*, 133–1143. https://doi.org/10.1139/P08-055.

Article
Google Scholar

Kumar, R., & Kansal, T. (2009). Propagation of Rayleigh waves in transversely isotropic generalized thermoelastic diffusion. *Journal of Engineering Physics and Thermophysics, Springer, 82*(6), 1199–1210.

Article
Google Scholar

Kumar, R., & Kansal, T. (2013). Propagation of cylindrical Rayleigh waves in a transversely isotropic thermoelastic diffusive solid half-space. *Journal of Theoretical and Applied Mechanics, 43*(3), 3–20.

Article
MathSciNet
MATH
Google Scholar

Kumar, R., Kaushal, P., & Sharma, R. (2018). Transversely isotropic magneto-visco thermoelastic medium with vacuum and without energy dissipation. *Journal of Solid Mechanics, 10*(2), 416–434.

Google Scholar

Kumar, R., Sharma, N., & Lata, a. P. (2016a). Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force. *Structural Engineering and Mechanics, 57*(1), 91–103.

Article
Google Scholar

Kumar, R., Sharma, N., & Lata, P. (2016b). Effects of thermal and diffusion phase-lags in a plate with axisymmetric heat supply. *Multidiscipline Modeling in Materials and Structures(Emerald), 12*(2), 275–290.

Article
MATH
Google Scholar

Kumar, R., Sharma, N., & Lata, P. (2016c). Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation. *Journal of Solid Mechanics, 8*(4), 840–858.

Google Scholar

Kumar, R., Sharma, N., Lata, P., & Abo-Dahab, S. (2017). Rayleigh waves in anisotropic magnetothermoelastic medium. *Coupled Systems Mechanics, 6*(3), 317–333.

Google Scholar

Lata, P., & Kaur, I. (2019a). Transversely isotropic thick plate with two temperature and GN type-III in frequency domain. *Coupled Systems Mechanics-Techno Press, 8*(1), 55–70.

Google Scholar

Lata, P., & Kaur, I. (2019b). Study of transversely isotropic thick circular plate due to ring load with two temperature & Green Nagdhi theory of type-I, II and III. In *International conference on sustainable computing in science, Technology & Management (SUSCOM-2019), − Elsevier SSRN* (pp. 1753–1767). Jaipur: Amity University Rajasthan.

Google Scholar

Lata, P., & Kaur, I. (2019c). Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply. *Structural Engineering and Mechanics, 69*(6), 607–614.

Google Scholar

Lata, P., & Kaur, I. (2019d). Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load. *SN Applied Sciences, 1*, 426. https://doi.org/10.1007/s42452-019-0438-z.

Article
Google Scholar

Lata, P., & Kaur, I. (2019e). Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid. *Structural Engineering and Mechanics, 70*(2), 245–255.

Google Scholar

Lata, P., Kumar, R., & Sharma, N. (2016). Plane waves in an anisotropic thermoelastic. *Steel and Composite Structures, 22*(3), 567–587.

Article
Google Scholar

Mahmoud, S. R. (2011). Effect of rotation, gravity field and initial stress on generalized magneto-thermoelastic Rayleigh waves in a granular medium. *Applied Mathematical Sciences, 41*(5), 2013–2032.

MathSciNet
MATH
Google Scholar

Mahmoud, S. R. (2014). Effect of non-homogenity, magnetic field and gravity field on Rayleigh waves in an initially stressed elastic half-space of orthotropic material subject to rotation. *Journal of Computational and Theoretical Nanoscience, 11*(7), 1627–1634.

Article
Google Scholar

Marin, M. (1997). Cesaro means in thermoelasticity of dipolar bodies. *Acta Mechanica, 122*(1–4), 155–168.

Article
MathSciNet
MATH
Google Scholar

Marin, M. (2009). On the minimum principle for dipolar materials with stretch. *Nonlinear Analysis Real World Applications, 10*(3), 1572–1578.

Article
MathSciNet
MATH
Google Scholar

Marin, M. (2010). A partition of energy in thermoelasticity of microstretch bodies. *Nonlinear Analysis: Real World Applications, 11*(4), 2436–2447.

Article
MathSciNet
MATH
Google Scholar

Marin, M., Baleanu, D., & Vlase, S. (2017). Effect of microtemperatures for micropolar thermoelastic bodies. *Structural Engineering and Mechanics, 61*(3), 381–387.

Article
Google Scholar

Marin, M., & Craciun, E. (2017). Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. *Composites Part B: Engineering, 126*, 27–37.

Article
Google Scholar

Marin, M., Ellahi, R., & Chirilă, A. (2017). On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. *Carpathian Journal of Mathematics, 33*(2), 219–232.

MathSciNet
MATH
Google Scholar

Marin, M., & Nicaise, S. (2016). Existence and stability results for thermoelastic dipolar bodies with double porosity. *Continuum Mechanics and Thermodynamics, 28*(6), 1645–1657.

Article
MathSciNet
MATH
Google Scholar

Othman, M. I. A., & Marin, M. (2017). Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory. *Results in Physics, 7*, 3863–3872.

Article
Google Scholar

Othman, M. I., & Said, S. M. (2018). Effect of diffusion and internal heat source on a two-temperature thermoelastic medium with three-phase-lag model. *Archives of Thermodynamics*, *39*(2), 15–39.

Othman, M. I., & Song, Y. Q. (2006). The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation. *Acta Mechanica, 184*, 89–204.

Article
MATH
Google Scholar

Othman, M. I., & Song, Y. Q. (2008). Reflection of magneto-thermoelastic waves from a rotating elastic half-space. *International Journal of Engineering Science, 46*, 459–474.

Article
MathSciNet
MATH
Google Scholar

Rafiq, M., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., et al. (2019). Harmonic waves solution in dual-phase-lagmagneto-thermoelasticity. *Open Physics, 17*, 8–15. https://doi.org/10.1515/phys-2019-0002.

Article
Google Scholar

Rayleigh, L. (1885). On waves propagated along the plane surface of an elastic solid. *Proceedings of the London Mathematical Society, s1-17*(1), 4–11.

Article
MathSciNet
MATH
Google Scholar

Sharma, J. N., & Kaur, D. (2010). Rayleigh waves in rotating thermoelastic solids with voids. *International Journal of Applied Mathematics and Mechanics, 6*(3), 43–61.

Google Scholar

Sharma, J. N., Pal, M., & Chand, D. (2005). Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. *Journal of Sound and Vibration, 284*, 227–248.

Article
Google Scholar

Sharma, J. N., & Singh, H. (1985). Thermoelastic surface waves in a transversely isotropic half space with thermal relaxations. *Indian Journal of Pure and Applied Mathematics, 16*, 1202–1212.

MathSciNet
MATH
Google Scholar

Singh, B., Kumari, S., & Singh, J. (2014). Propagation of the Rayleigh wave in an initially stressed transversely isotropic dual-phase-lag magnetothermoelastic half-space. *Journal of Engineering Physics and Thermophysics, 87*(6), 1539–1547.

Article
Google Scholar

Slaughter, W. S. (2002). *The linearised theory of elasticity*. Boston: Birkhausar.

Ting, T. C. (2004). Surface waves in a rotating anisotropic elastic half-space. *Wave Motion, 40*, 329–346.

Article
MathSciNet
MATH
Google Scholar