Ashour, O., Rogers, C. A., & Kordonsky, W. (1996). Magnetorheological fluids: Materials, characterization, and devices. Journal of Intelligent Material Systems and Structures, 7(2), 123–130.
Article
Google Scholar
Ashtiani, M., Hashemabadi, S., & Ghaffari, A. (2015b). A review on the magnetorheological fluids preparation and stabilization. Journal of Magnetism and Magnetic Materials, 374, 716–730.
Article
Google Scholar
Ashtiani M, Hashemabadi SH, Shirvani M (2014) Experimental Study of stearic acid effect on stabilization of magnetorheological fluids (MRFs). (IChEC 2014)
Ashtiani, M., Hashemabadin, S. H., & Ghaffar, A. (2015a). A review on the magnetorheological fluids preparation and stabilization. Journal of Magnetism and Magnetic Materials, 374, 716–730.
Article
Google Scholar
Bajkowski J, Bajkowski M, Grzesikiewicz W, Sofonea M,Shillor M, Zalewski R (2007) Analysis of the dependence between a temperature and working parameters of the MR damper. Journal of Mechanics, vol. 26, no. 4.
Bell, R., Miller, E., Karli, J., Vavreck, A., & Zimmerman, D. (2007). Influence of particle shape on the properties of magnetorheological fluids. International Journal of Modern Physics B, 21(2829), 5018–5025.
Article
Google Scholar
Bemporad, A., Morari, M., Dua, V., Efstratios, N., & Di, P. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38, 3–20.
Article
MathSciNet
MATH
Google Scholar
Bombard A, Antunes L, Gouvêa D (2009) Redispersibility in magnetorheological fluids: Surface interactions between iron powder and wetting additives. Journal of Physics: Conference Series, volume 149, p. 012038.
Google Scholar
BombardA, J. I., Alcântara, M., & Knobel, M. (2003). Magnetic susceptibility and saturation magnetization of some carbonyl iron powders used in magnetorheological fluids. Materials Science Forum, 416-418, 753–750.
Article
Google Scholar
Bossis, G., Kuzhir, P., López-López, M., & Mingalyov, P. (2008). Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their MR properties. RheologicaActa, 47(7), 787–796.
Google Scholar
Braz-César MT, Barros RC (2013) Numerical modeling of MR dampers. Mecânica Experimental. Vol 22, 147-159
Carlson, J. (2002b). What makes a good MR fluid? Journal of Intelligent Material Systems and Structures, 13(7-8), 431–435.
Article
Google Scholar
Carlson, J., & Jolly, M. R. (2000). Magnetorheological fluids, foam and elastomers devices. Mechatronics, 10(4-5), 555–569.
Article
Google Scholar
Carlson JD (2002a) Instant magnetorheological fluids mix. U.S. Patent US64754004B1, 2002.
Carlson JD (2007) Magnetorheological fluids technology-current status in 2006. Proceedings of 10th International Conference on ER fluids & MR Suspensions, Singapore, 397
Carlson, J. D., Catanzarite, D. M., & St. Clair, K. A. (1996). Commercial magneto-rheological fluid devices. International Journal of Modern Physics, 10(23 & 24), 2857–2865.
Article
Google Scholar
Chen, F., Yuan, Z. B., Sheng, C. L., Qing, W., Nan, L., & Hu, K. A. (2005). The effect of the green additive guar gum on the properties of magnetorheological fluids. Smart materials structure, 14, N1–N5.
Article
Google Scholar
Chen, S., Huang, J., Jian, K., & Ding, J. (2015). Analysis of influence of temperature on magnetorheological fluids and transmission performance. Advances in Materials Science and Engineering, 2015, 1–7.
Google Scholar
Cheng H, Zuo L, Song J, Zhang Q, Wereley N (2010) Magnetorheology and sedimentation behavior of an aqueous suspension of surface modified carbonyl iron particles. Journal of Applied Physics, vol. 107, no. 9, pp. 09B507.
Article
Google Scholar
Cho, M. S., Lim, S. T., Jang, I. B., Choi, H. J., & John, M. S. (2004). Encapsulation of spherical iron -particle with PMMA and its MR particles. IEEE Transactions on Magnetics, 40(4), 3036–3038.
Article
Google Scholar
Choi, S., & Han, Y. (2013b). Magnetorheological fluid technology: Applications in vehicle systems 1st edition by (1st ed.). Boca Raton, FL: CRC Press, Taylor & Francis.
Google Scholar
Choi, S., Wereley, N., & RadhakrishnanR, C. A. (2006). Rheological parameter estimation for a ferrous nanoparticle-based magnetorheological fluids using genetic algorithms. Journal of Intelligent Material Systems and Structures, 17(3), 261–269.
Article
Google Scholar
Chooi, W. W., & Oyadiji, O. (2009). Mathematical modeling, analysis, and design of MR, MR dampers. Transactions of the ASME, vol., 131.
Chrzan MJ, Carlson JD (2001) Magnetorheological fluids sponge devices and their use in vibration control of washing machines. Smart Structures and Materials 2001: Damping and Isolation, Feb. 2001.
Collette C, Janssens S, Artoos K (2011) Review of active vibration isolation strategies. Recent Patents on Mechanical Engineering; 4:212–9.
Article
Google Scholar
Ding, J., Li, W., & Shen, S. J. (2011). Research and applications of shear thickening fluids. Recent Patents on Materials Sciencee, 4(1), 43–49.
Google Scholar
Fang, F. F., Yang, M. S., & Choi, H. J. (2008). Novel magnetic composite particles of carbonyl iron embedded in polystyrene and their MR characteristics. IEEE Transactions on Magnetics, 44(11), 4533–4536.
Article
Google Scholar
Ferdaus MM (2014) Temperature effect analysis on magneto rheological damper’s performance. Journal of Automation and Control Engineering Volume 2, No. 4, December 2014
Article
Google Scholar
Foister R, Iyengar V, Yurgelevic S (2003) Stabilization of magnetorheological fluids suspensions using a mixture of organoclays. US Patent US6592772B2, 2003.
Goncalves, F., Ahmadian, M., & Carlson, J. D. (2005). Behavior of magnetorheological fluids at high velocities and high shear rates. International Journal of Modern Physics B, 19(0709), 1395–1401.
Article
Google Scholar
Goncalves, F., & Carlson, J. D. (2009). An alternate operation mode for magnetorheological fluids—Magnetic gradient pinch. Journal of Physics: Conference Series, 149, 012050.
Google Scholar
Grunwald, A., & Olabi, A. (2008). Design of magneto-rheological (MR) valve. Sensors and Actuators A: Physical, 148(1), 211–223.
Article
Google Scholar
Hato, M., Choi, H., Sim, H., Park, B., & Ray, S. (2011). Magnetic carbonyl iron suspension with organoclay additive and its MR properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1-3, 103), –109.
Huang J, Wang P, Wang G (2012) Squeezing force of the magnetorheological fluids isolating damper for centrifugal fan in nuclear power plant. Science and Technology of Nuclear Installations, vol. 2012, Article ID 175703, doi.org/https://doi.org/10.1155/2012/175703
Article
Google Scholar
Ierardi RF, Bombard AJF (2009) Off-state viscosity and yield stress optimization of magnetorheological fluids: a mixture design of experiments approach. (EEMS 2009), 149 (2009) 012037
Iglesias, G., López-López, M., Duran, J., González-Caballero, F., & Delgado, A. (2012). Dynamic characterization of extremely bidisperse magnetorheological fluids. Journal of Colloid and Interface Science, 377, 153–159.
Article
Google Scholar
Ismail I, Aqida SN (2014) Fluid-particle separation of MR (MR) fluid in MR machining application. Key Engineering Materials: Trans Tech Publ. p. 746-755.
Iyengar V, Foister R, Yurgelevic S(2010) Magnetorheological fluids with a fluorocarbon thickener. US Patent US7731863B2, 2010
Iyengar VR, Foister TR (2002) Use of high surface area untreated fumed silica in magnetorheological fluids formulation. US Patent US6451219B1, 2002
Jang, D., Liu, Y., Kim, J., & Choi, H. (2015). Enhanced magneto rheology of soft magnetic carbonyl iron suspension with hard magnetic γ-fe2o3 nanoparticle additive. Colloid & Polymer Science, 293, 641–647.
Article
Google Scholar
Jang, I., Kim, H., Lee, J., You, J., Choi, H., & Jhon, M. (2005). Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. Journal of Applied Physics, 97, 10Q912.
Article
Google Scholar
Jiang, J., Chen, B., & Zhang, F. (2011). Studying on the magnetorheological fluids and its rheometer. Advanced Materials Research, 230-232, 1396–1401.
Article
Google Scholar
Jolly, M. R., Bender, J. W., & Carlson, J. D. (1998). Properties and application of commercial magnetorheological fluids. SPIE, 3327, 262–275.
Google Scholar
Kallio M (2005) The elastic and damping properties of magnetorheological elastomers,. Ph. D, Finnish Technical Research Centre (VTT).
Karnopp, D., Crosby, M. J., & Farwood, R. A. (1974). Vibration control using semi-active force generators. ASME Journal Engineering for industry, 96(2), 619–626.
Article
Google Scholar
Kelly, S. G. (2012). Mechanical vibrations: Theory and applications. Stamford, CT: Cengage Learning.
Google Scholar
Koo, J., Goncalves, F., & Ahmadian, M. (2006). A comprehensive analysis of the response time of MR dampers. Smart Materials and Structures, 15(2), 351–358.
Article
Google Scholar
Kordonsky WI (1993) MR effect as a base of new devices. Journal of Magnetism and Magnetic Materials, 122, 395-398, North-Holland.
Kumbhar, B., Patil, S., & Sawant, S. (2015). Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application. Engineering Science and Technology, an International Journal, 18(3), 432–438.
Article
Google Scholar
Kuzhir, P., López-López, M. T., & Bossis, G. (2009). Magnetorheology of fiber suspensions. II. Theory. Journal of Rheology, 53(1), 127–151. https://doi.org/10.1122/1.3005405.
Article
Google Scholar
Li, Y., Li, J., Li, W., & Du, H. (2014). A state-of-the-art review on magnetorheological elastomer devices. Smart Materials and Structures, 23, 123001. https://doi.org/10.1088/0964-1726/23/12/123001.
Article
Google Scholar
López-López M, Kuzhir P, Lacis S, Bossis G, González-Caballero F, Durán J (2006) Magnetorheology for suspensions of solid particles dispersed in ferrofluids. Journal of Physics: Condensed Matter, volume 18, no. 38, pp. S2803-S2813.
Google Scholar
Malik AK (1990) Principles of vibration control. ISBN 81-85336-38-5
Mrlík, M., Ilčíková, M., Pavlínek, V., Mosnáček, J., Peer, P., & Filip, P. (2013). Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. Journal of Colloid and Interface Science, 396, 146–151.
Article
Google Scholar
Munoz BC (1997) Magnetorheological fluids. US Patent US5683615A, 1997
Obrien RT(2007). Bang-Bang control of lightly damped systems. 2007 Thirty-Ninth Southeastern Symposium on System Theory. doi:https://doi.org/10.1109/ssst.2007.352337.
Olabi, A., & Grunwald, A. (2007). Design and application of magneto-rheological fluid. Materials &Design, 28(10), 2658–2664.
Article
Google Scholar
Phu D. and Choi S. (2019). Magnetorheological fluid based devices reported in 2013–2018: Mini-Review and Comment on Structural Configurations. Frontiers in Materials 6.
Phule, P. (1999). Magnetorheological fluids. US patent no 5,985,168, 1999.
Portillo, M., & Iglesias, G. (2017). Magnetic nanoparticles as a redispersing additive in magnetorheological fluid. Journal of Nanomaterials, 2017, 1–8. https://doi.org/10.1155/2017/9026219.
Article
Google Scholar
Powell, L. A., Hu, W., & Wereley, N. M. (2013). Magnetorheological fluids composites synthesized for helicopter landing gear applications. Journal of Intelligent Material Systems and Structures, 24, 1043–1048.
Article
Google Scholar
Premalatha, E. S., Chokkalingam, R., & Mahendran, C. (2012). Magneto mechanical properties of iron based magnetorheological fluids. American Journal of Polymer Science, 2(4), 50–55.
Article
Google Scholar
Rabbani, Y., Ashtiani, M., & Hashemabadi, S. H. (2015). An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluids stability and MR effect. Soft Matter, 11, 4453–4460.
Article
Google Scholar
Rabinow J (1948) Magnetic fluid clutch. National Bureau of Standards Technical News Bulletin’, volume32, pp.54–60
Rabinow, J. (1951). Magnetic fluid torque and force transmitting device. U.S. patent 2,575,360 (1951).
Rao S. S. (1990). Mechanical vibrations, 2nd ed. Reading, Mass: Addison-Wesley.
Rodríguez-Arco, L., Kuzhir, P., López-López, M., Bossis, G., & Durán, J. (2013). Instabilities of a pressure- driven flow of magnetorheological fluids. Journal of Rheology, 57(4), 1121–1146.
Article
Google Scholar
Sahin, H., Wang, X., & Gordaninejad, F. (2009). Temperature dependence of magneto-rheological materials. Journal of Intelligent Material Systems and Structures, 20(18), 2215–2222.
Article
Google Scholar
Sam Paul, P., Varadarajan, A. S., & Mohanasundram, S. (2015). Effect of magnetorheological fluid on tool wear during hard turning with minimal fluid application. Archives of Civil and Mechanical Engineering, 15, 124–132. https://doi.org/10.1016/j.acme.2014.03.007.
Article
Google Scholar
Sam Paul, P., Varadarajan, A. S., Vasanth, X. A., and Lawrance G. (2014). Effect of magnetic field on damping ability of magnetorheological damper during hard turning. Archives of Civil and Mechanical Engineering, 14, 433–443. https://doi.org/10.1016/j.acme.2013.11.001.
Article
Google Scholar
Sarkar C, Hirani H (2013) Synthesis and characterization of antifriction magnetorheological fluids for brake. Defence Science Journal, Volume 63, No. 4,July 2013, pp. 408 -412.
Stutz, L., & Rochinha, F. (2011). Synthesis of a magneto-rheological vehicle suspension system built on the variable structure control approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 33(4), 445–458.
Article
Google Scholar
Sukhwani VK, Hirani H (2007) Synthesis and characterization of low cost MR (MR) fluids. Behavior and Mechanics of Multifunctional and Composite Materials 2007.
Turczyn R, Kciuk M (2008) Preparation and study of model magnetorheological fluids. Journal of Achievements in Materials and Manufacturing Engineering, vol. 27, no. 2.
Ulicny, J., & Mance, A. (2004). Evaluation of electroless nickel surface treatment for iron powder used in magnetorheological fluids. Materials Science and Engineering: A, 369(1-2), 309–313.
Article
Google Scholar
Utami, D., Ubaidillah, Mazlan, S., Imaduddin, F., Nordin, N., Bahiuddin, I., Abdul Aziz, S., Mohamad, N., & Choi, S. (2018). Material characterization of a magnetorheological fluid subjected to long-term operation in damper. Materials, 11(11), 2195.
Article
Google Scholar
Vicente, J., Klingenberg, D., & Hidalgo-Alvarez, R. (2011). Magnetorheological fluids: A review. Soft Matter, 7(8), 3701.
Article
Google Scholar
von Lockette, P., Lofland, S., Koo, J., Kadlowec, J., & Dermond, M. (2008). Dynamic characterization of bimodal particle mixtures in silicone rubber magnetorheological materials. Polymer Testing, 27, 931–935. https://doi.org/10.1016/j.polymertesting.2008.08.007.
Article
Google Scholar
Wahid S, Ismail I, Aid S, Rahim M (2016) Magneto-rheological defects and failures: a review. IOP Conference Series: Materials Science and Engineering, volume 114, p. 012101.
Article
Google Scholar
Wang D, Liao W (2011) Magnetorheological fluids dampers: a review of parametric modeling. Smart Materials and Structures, vol. 20, no. 2, p. 023001.
Article
Google Scholar
Weiss KD, Nixon DA, Carlson JD, Margida AJ (1997) Thixotropic MR materials, US Patent US5645752A, 1997.
Winslow WM (1947) Method and means for translating electrical impulses into mechanical force. US Patent US 2417850A, 1947
Wu, J., Gong, X., Chen, L., Xia, H., & Hu, Z. (2009). Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in-situ polymerization. Journal of Applied Polymer Science, 114, 901–910. https://doi.org/10.1002/app.30563.
Article
Google Scholar
Wu, W. P., Zhao, B. Y., Wu, Q., Chen, L. S., & Hu, K. (2006). The strengthening effect of guar gum on the yield stress of magnetorheological fluids. Smart Materials and Structures, 15, N94–N98.
Article
Google Scholar
Xue, D., & Sethi, R. (2012). Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. Journal of Nanoparticle Research, 14(11).
Yang, S. Y., Han, C., Shin, S. U., & Choi, S. B. (2017). Design and evaluation of a semi-active magneto-rheological mount for a wheel loader cabin. Actuators, 6(2), 16.
Article
Google Scholar
Yin, X., Guo, S., & Song, Y. (2018). Magnetorheological fluids actuated haptic-based teleoperated catheter operating system. Micromachines, 9(9), 465.
Article
Google Scholar
Yoo, J., & Wereley, N. (2002). Design of a high-efficiency MR valve. Journal of Intelligent Material Systems and Structures, 13(10), 679–685.
Article
Google Scholar
York, D., Wang, X., & Gordaninejad, F. (2007). A new magnetorheological fluids -elastomer vibration isolator. Journal of Intelligent Material Systems and Structures, 18(12), 1221–1225.
Article
Google Scholar
Choi Young-Tai, Wereley NM, Jeon Young-Sik. (2005) Semi-active vibration isolation using magneto rheological isolators. Journal of Aircraft Vol. 42, No. 5.
Yuan, X., Tian, T., Ling, H., Qiu, T., & He, H. (2019). A review on structural development of magnetorheological fluid damper. Shock and Vibration, 2019, 1–33.
Google Scholar
Zhang, J. Q., Zhang, J., & Jing, Q. (2009). Effect of seven different additives on the properties of magnetorheological fluids. In 11th conference on electrorheological fluids and MR suspensions. https://doi.org/10.1088/1742-6596/149/1/012086.
Chapter
Google Scholar
Zhang W, Shen R, Lu K, Ji A,Cao Z (2012) Nanoparticle enhanced evaporation of liquids: a case study of silicone oil and water. AIP Advances, vol. 2, no. 4, p. 042119.
Article
Google Scholar