Abbasi, M., Barakat, M. S., Vahidkhah, K., & Azadani, A. N. (2016). Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, 62, 33–44. https://doi.org/10.1016/j.jmbbm.2016.04.031.
Article
Google Scholar
Ahmad, F., Prabhu, R., Liao, J., Soe, S., Jones, M. D., Miller, J., … Theobald, P. S. (2018). Biomechanical properties and microstructure of neonatal porcine ventricles. Journal of the Mechanical Behavior of Biomedical Materials, 88, 18–28. https://doi.org/10.1016/j.jmbbm.2018.07.038.
Article
Google Scholar
Anssari-Benam, A., Tseng, Y. T., Holzapfel, G. A., & Bucchi, A. (2019). Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation. Acta Biomaterialia, 88, 120–130. https://doi.org/10.1016/j.actbio.2019.02.008.
Article
Google Scholar
Aydin, R., et al. (2017). Experimental characterization of the biaxial mechanical properties of porcine gastric tissue. Journal of the Mechanical Behavior of Biomedical Materials, 74, 499–506. https://doi.org/10.1016/j.jmbbm.2017.07.028.
Article
Google Scholar
Bellini, C., Glass, P., Sitti, M., & di Martino, E. S. (2011). Biaxial mechanical modeling of the small intestine. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1727–1740. https://doi.org/10.1016/j.jmbbm.2011.05.030.
Article
Google Scholar
Boateng, D., Agyemang, C., Beune, E., Meeks, K., Smeeth, L., Schulze, M. B., … Klipstein-Grobusch, K. (2018). Cardiovascular disease risk prediction in sub-Saharan African populations—Comparative analysis of risk algorithms in the RODAM study. International Journal of Cardiology, 254, 310–315. https://doi.org/10.1016/j.ijcard.2017.11.082.
Article
Google Scholar
Boateng, D., Agyemang, C., Kengne, A. P., Grobbee, D. E., & Klipstein-Grobusch, K. (2018). Cardiovascular disease risk prediction in low income settings: A call for context specific risk equations. International Journal of Cardiology, 265, 239. https://doi.org/10.1016/j.ijcard.2018.05.010.
Article
Google Scholar
Brooks, P. A., Khoo, N. S., & Hornberger, L. K. (2014). Systolic and diastolic function of the fetal single left ventricle. Journal of the American Society of Echocardiography, 27(9), 972–977. https://doi.org/10.1016/j.echo.2014.06.012.
Article
Google Scholar
Chalon, A., Favre, J., Piotrowski, B., Landmann, V., Grandmougin, D., Maureira, J. P., … Tran, N. (2018). Contribution of computational model for assessment of heart tissue local stress caused by suture in LVAD implantation. Journal of the Mechanical Behavior of Biomedical Materials, 82, 291–298. https://doi.org/10.1016/j.jmbbm.2018.03.032.
Article
Google Scholar
Choi, H. S., & Vito, R. (1990). Two-dimensional stress-strain relationship for canine pericardium. Journal of Biomechanical Engineering, 112(2), 153–159. https://doi.org/10.1115/1.2891166.
Article
Google Scholar
Cooney, G. M., Lake, S. P., Thompson, D. M., Castile, R. M., Winter, D. C., & Simms, C. K. (2016). Uniaxial and biaxial tensile stress–stretch response of human linea alba. Journal of the Mechanical Behavior of Biomedical Materials, 63, 134–140. https://doi.org/10.1016/j.jmbbm.2016.06.015.
Article
Google Scholar
de Bortoli, D., et al. (2011). Hyperfit–curve fitting software for incompressible hyperelastic material models. In Proceedings of COBEM.
Google Scholar
Dokos, S., et al. (2002). Shear properties of passive ventricular myocardium. American Journal of Physiology-Heart and Circulatory Physiology, 283(6), H2650–H2659.
Article
Google Scholar
Duprey, A., Trabelsi, O., Vola, M., Favre, J. P., & Avril, S. (2016). Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomaterialia, 42, 273–285. https://doi.org/10.1016/j.actbio.2016.06.028.
Article
Google Scholar
Fatemifar, F., Feldman, M. D., Oglesby, M., & Han, H. C. (2019). Comparison of biomechanical properties and microstructure of trabeculae carneae, papillary muscles, and myocardium in the human heart. Journal of Biomechanical Engineering, 141(2), 021007. https://doi.org/10.1115/1.4041966.
Article
Google Scholar
Fung, Y. (1991). What are the residual stresses doing in our blood vessels? Annals of Biomedical Engineering, 19(3), 237–249. https://doi.org/10.1007/BF02584301.
Article
Google Scholar
Gallo, D., Montanaro, C., & Morbiducci, U. (2019). Computational modelling in congenital heart disease: Challenges and opportunities. International Journal of Cardiology, 276, 116–117. https://doi.org/10.1016/j.ijcard.2018.11.109.
Article
Google Scholar
Geest, J. P. V., Sacks, M. S., & Vorp, D. A. (2006). A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. Journal of Biomechanics, 39(13), 2347–2354. https://doi.org/10.1016/j.jbiomech.2006.05.011.
Article
Google Scholar
Khalafvand, S., et al. (2018). Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics. Journal of Biomechanics, 74, 116–125. https://doi.org/10.1016/j.jbiomech.2018.04.030.
Article
Google Scholar
Khoiy, K. A., et al. (2018). Anisotropic and nonlinear biaxial mechanical response of porcine small bowel mesentery. Journal of the Mechanical Behavior of Biomedical Materials, 78, 154–163. https://doi.org/10.1016/j.jmbbm.2017.11.017.
Article
Google Scholar
Kramer, K., et al., An investigation of layer-specific tissue biomechanics of porcine atrioventricular valve anterior leaflets. Available at SSRN 3321895, 2019.
Google Scholar
Kural, M. H., Cai, M., Tang, D., Gwyther, T., Zheng, J., & Billiar, K. L. (2012). Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. Journal of Biomechanics, 45(5), 790–798. https://doi.org/10.1016/j.jbiomech.2011.11.019.
Article
Google Scholar
Martinsson, A., Li, X., Torp-Pedersen, C., Zöller, B., Andell, P., Andreasen, C., … Andersson, C. (2019). Outcomes associated with dual antiplatelet therapy after myocardial infarction in patients with aortic stenosis. International Journal of Cardiology, 281, 140–145. https://doi.org/10.1016/j.ijcard.2019.01.063.
Article
Google Scholar
Masithulela, F. (2015a). Analysis of passive filling with fibrotic myocardial infarction. In ASME international mechanical engineering congress and exposition. American Society of Mechanical Engineers.
Masithulela, F. (2015b). The effect of over-loaded right ventricle during passive filling in rat heart: A biventricular finite element model. In ASME 2015 international mechanical engineering congress and exposition. American Society of Mechanical Engineers.
Masithulela, F. (2016b). Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Bio-Medical Materials and Engineering, 27(5), 507–525. https://doi.org/10.3233/BME-161604.
Masithulela, F. J. (2016a). Computational biomechanics in the remodelling rat heart post myocardial infarction. University of Cape Town.
Masithulela, F. J. (2016c). Computational biomechanics in the remodelling rat heart post myocardial infarction. In Human biology, (p. 263). University of Cape Town.
Ndlovu, Z., Nemavhola, F., & Desai, D. (2020). Biaxial mechanical characterization and constitutive modelling of sheep sclera soft tissue. Russian Journal of Biomechanics/Rossijski Zurnal Biomehaniki, 24(1), 84–96.
Nemavhola, F. (2017a). Fibrotic infarction on the LV free wall may alter the mechanics of healthy septal wall during passive filling. Bio-Medical Materials and Engineering, 28(6), 579–599. https://doi.org/10.3233/BME-171698.
Nemavhola, F. (2017b). Biaxial quantification of passive porcine myocardium elastic properties by region. Engineering Solid Mechanics, 5(3), 155–166.
Nemavhola, F. (2019a). Mechanics of the septal wall may be affected by the presence of fibrotic infarct in the free wall at end-systole. International Journal of Medical Engineering and Informatics, 11(3), 205–225. https://doi.org/10.1504/IJMEI.2019.101632.
Nemavhola, F. (2019b). Detailed structural assessment of healthy interventricular septum in the presence of remodeling infarct in the free wall–A finite element model. Heliyon, 5(6), e01841. https://doi.org/10.1016/j.heliyon.2019.e01841.
Article
Google Scholar
Nemavhola, F. (2020). Mechanical properties of pig heart - biaxial dataset for left ventricle, mid-wall and right ventricle. University of South Africa.
Ngwangwa, H. M., & Nemavhola, F. (2020). Evaluating computational performances of hyperelastic models on supraspinatus tendon uniaxial tensile test data. Journal of Computational Applied Mechanics. (in press)
Nordbø, Ø., Lamata, P., Land, S., Niederer, S., Aronsen, J. M., Louch, W. E., Vik, J. O. (2014). A computational pipeline for quantification of mouse myocardial stiffness parameters. Computers in Biology and Medicine, 53, 65–75. https://doi.org/10.1016/j.compbiomed.2014.07.013.
Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., Murray, C. (2017). Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1–25. https://doi.org/10.1016/j.jacc.2017.04.052.
Sacks, M. S. (2000). Biaxial mechanical evaluation of planar biological materials. Journal of Elasticity and the Physical Science of Solids, 61(1-3), 199.
MATH
Google Scholar
Shen, J. J., Xu, F. Y., & Yang, W. A. (2016). Finite element analysis of left ventricle during cardiac cycles in viscoelasticity. Computers in Biology and Medicine, 75, 63–73. https://doi.org/10.1016/j.compbiomed.2016.05.012.
Article
Google Scholar
Sokolis, D. P. (2017). Experimental study and biomechanical characterization for the passive small intestine: Identification of regional differences. Journal of the Mechanical Behavior of Biomedical Materials, 74, 93–105. https://doi.org/10.1016/j.jmbbm.2017.05.026.
Article
Google Scholar
Sokolis, D. P., Orfanidis, I. K., & Peroulis, M. (2011). Biomechanical testing and material characterization for the rat large intestine: Regional dependence of material parameters. Physiological Measurement, 32(12), 1969–1982. https://doi.org/10.1088/0967-3334/32/12/007.
Article
Google Scholar
Sommer, G., Schriefl, A. J., Andrä, M., Sacherer, M., Viertler, C., Wolinski, H., & Holzapfel, G. A. (2015). Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomaterialia, 24, 172–192. https://doi.org/10.1016/j.actbio.2015.06.031.
Article
Google Scholar
Stavropoulou, E. A., Dafalias, Y. F., & Sokolis, D. P. (2009). Biomechanical and histological characteristics of passive esophagus: Experimental investigation and comparative constitutive modeling. Journal of Biomechanics, 42(16), 2654–2663. https://doi.org/10.1016/j.jbiomech.2009.08.018.
Article
Google Scholar
Yu, H., del Nido, P. J., Geva, T., Yang, C., Tang, A., Wu, Z., … Tang, D. (2019). Patient-specific in vivo right ventricle material parameter estimation for patients with tetralogy of Fallot using MRI-based models with different zero-load diastole and systole morphologies. International Journal of Cardiology, 276, 93–99. https://doi.org/10.1016/j.ijcard.2018.09.030.
Article
Google Scholar