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Thermoelastic symmetric and antisymmetric wave
modes with trigonometric functions in laminated
plates
Kishori Lal Verma
Abstract

Background: Coupling term in coupled thermoelasticity generally is small for all materials and can be neglected.
Neglecting the coupling term simplifies the analysis without noticeable effect on the frequency spectrum. In
generalized theory of thermoelasticity, effect of increasing the relaxation time is to lower the speeds of the thermal
modes. Since the effect of anisotropy of the material is quite pronounced on waves propagating in different
directions along the plate. Thus, it is significant to consider the anisotropy of the material in order to accurately
model the propagation characteristics.

Methods: A theoretical framework is developed for displacements and temperature expression of plane harmonic
waves in generalized theory of thermoelasticity using three dimensional thermoelasticity with a thermal relaxation
time. Subsequently, the Lamb waves in a single lamina where a compact closed-form dispersion relation is derived
by separating thermoelastic symmetric and anti-symmetrical modes using trigonometric functions through the
lamina thickness.

Results: Propagation of guided thermoelastic waves in a homogeneous, orthotropic, thermally conducting plate is
investigated within the framework of the generalized theory of thermoelasticity. The results show that both elastic
and thermal modes are attenuated, the thermal modes exhibit much larger attenuation than the elastic modes.
The attenuation of the former is quite small. Results obtained are extended to a general laminate with an arbitrary
layup. On employing boundary conditions on both mid-plane and top surfaces is developed to decouple the wave
modes for symmetric and anti-symmetrical modes for laminates.

Conclusions: Propagation of guided thermoelastic waves in a homogeneous, orthotropic, thermally conducting
plate is investigated employing generalized theory of thermoelasticity which includes a thermal relaxation time in
the heat conduction equation in order to model the finite speed of the thermal wave. Both elastic and thermal
modes are attenuated; the thermal modes exhibit much larger attenuation than the elastic modes. The effect of
increasing the relaxation time is to lower the speeds of the thermal modes. The effect of anisotropy of the material
is quite pronounced on waves propagating in different directions. Thus, it is important to consider the anisotropy
of the material in order to accurately model the propagation characteristics.
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Background
Composite structures are laminates consisting of several
fiber-reinforced laminates that are bonded mutually to
attain additional desirable structural properties and en-
hanced performance than conventional materials. Grow-
ing practical applications of advanced composite materials
in making structural components, such as aerospace
structures, aquatic vehicles, and many other uses has led
to the requirement of practical mathematical modeling of
their material characteristics and absorption of these
models into structural analysis, their strength and stiffness
can be tailored to meet stringent intend necessities for
high-speed aircrafts, spacecrafts, and space structures.
This has resulted in their extensive use in structures that
are subjected to severe variations in temperature. In the
thermally conducting composite solids, the increases in
the temperature distribution due to the occurrence of
geometrical or material discontinuities, which may
result in the increase of thermal stresses and may often
lead to the structural failure of the material. Thermal
stresses, especially at the interface between two different
materials, often represent a significant aspect in the
breakdown of laminated composite structures; as a
consequence, a number of mechanical models have been
proposed to estimate the importance of thermal loadings
(Vel and Batra 2001; Vel and Batra 1999, 2000). Therefore,
there is a need to accurately predict thermal stresses in
composite structures. For modeling purposes, idealiza-
tions are usually made with respect to the geometry and
the thermo-mechanical properties of the constituent
materials. Accordingly, for fiber-reinforced composites
with large values of elastic modulus and thermal conduct-
ivity, the fiber can be assumed to be rigid and insulated.
Many investigations (Achenbach 1973; Brekhovskikh

1960; Ewing et al. 1957) have pointed out the highly
dispersive character of such waves. There has been a rea-
sonable number of investigations reported in the literature
dealing with the analysis of laminated materials, such as
Abrate (1998), Choi and Chang (1992), Choi et al. (1991a, b),
Chawla (1987), Fukuda et al. (1996), and Halpin (1992),
coupled with the development of advanced anisotropic
material models of Hayhurst et al. 1999; (Hiermaie et al.
1999). Abo -el-nour and Askar Nadia (2014) deter-
mined the bulk acoustic wave (BAW) propagation
velocities (quasi-longitudinal, quasi-shear vertical and
quasi-shear horizontal) in two important piezoelectric
smart materials.
Nayfeh and Chementi (1989) studied dispersion curves

of elastic waves in general one-layered anisotropic media,
i.e., composite lamina. Nayfeh and Chementi (1991)
developed a transfer matrix technique to obtain the
dispersion relation curves of elastic wave propagating in
multilayered anisotropic media, i.e., composite laminate.
However, Nayfeh's formulations in elasticity (Nayfeh 1995;
Nayfeh and Chementi 1989, 1991; Jones 1975, 1999; Liu
et al. 1990) and in thermoelasticity (Hawwa and Nayfeh
1995) were limited to a given plane of incidence from a
line load parallel to the y-axis such that the problem
reduces to a generalized plane deformation where all the
three displacement components are functions of x and z.
Verma (2012) studied thermoelastic waves in anisotropic
laminated composite plates. Wang and Yuan (2005, 2006)
studied damage identification in a composite plate using
prestack reverse-time and propagation of lamb wave in
composite laminates experimentally. A detailed review
can be found in Cementi (1997).
Numerous structural components in space experience a

non-uniform temperature variation because of solar radi-
ant heating. Temperature variation through thickness may
cause an in-plane expansion or an out-of-plane curvature
or both. In order to minimize the thermal deformations in
laminated structures composed of layers of material, a
precise analytical computation is necessary. In the lami-
nated structures, however, the different material properties
of each layer cause large inter-laminar shearing stresses.
Consequently, one must also consider thermal stresses in
the models of the laminated structures.
The Classical Fourier law of heat conduction and conse-

quent mathematical models for temperature dynamics
constructed on the basis of parabolic partial differential
equations assumes that the thermal disturbances propa-
gate at infinite speeds. However, the assumption may lead
to an inaccurate response of the super large-scale space
structures, since a time lag of the propagation of the
thermal disturbances in such structures could not be dis-
regarded. The literature dedicated to coupled and general-
ized theories of thermoelasticity theories is quite large and
its detailed review can be found in Nowacki (1975, 1986),
Chadwick (1960, 1979), and Chadwick and Seet (1970).
The non-classical heat conduction theory that allows

the heat disturbances to propagate at finite speeds can be
taken into account by using models with thermal relax-
ation time, which are based on hyperbolic-type equations
for temperature. Non-classical heat-conduction theories
are closely connected with so-called theories with second
sound which view heat propagation as a wave-like
phenomenon. The thermal-structural coupling is also con-
sidered, since the restriction for the weight of the space
structures makes the super large-scale space structures
very flexible. Theories, eliminates the paradox of infinite
velocity of heat propagation, are called generalized theor-
ies of thermoelasticity and its detailed review can be found
in Chandrasekharaiah (1986, 1998). Theories of Lord and
Shulman (1967, referred to as the LS theory) and Green
and Lindsay (1972, referred to as the GL theory) are the
generalized coupled theory of thermoelasticity. The LS
model introduces a single time constant to dictate the
relaxation of thermal propagation, as well as the rate of
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change of strain rate and the rate of change of heat gener-
ation. In the GL model, on the other hand, the thermal
and thermo-mechanical relaxations times are governed by
two different time constants.
Achenbach (1973), Banerjee and Pao (1974), and Dhaliwal

and Sherief (1980) generalized these theories further to
anisotropic heat conducting elastic materials. Hawwa and
Nayfeh (1995) studied the general problem of thermoelas-
tic waves in anisotropic periodically laminated composites.
Studies of Hawwa and Nayfeh (1996), Thangjitham and
Choi (1991), and Tao and Prevost (1984) contain more
detailed discussions on this phenomenon. Verma and
Hasebe (2001; 2002) studied the wave propagation in
plates of general anisotropic media in generalized thermo-
elasticity. Verma et al. (1999) and Verma (2001, 2002)
studied thermoelastic problems by considering equation
for anisotropic heat-conducting solids with thermal
relaxation times.
In this article, a theoretical framework is developed for

the displacement and temperature expression of plane
harmonic waves using three-dimensional thermoelasticity.
Subsequently, the Lamb waves in a single lamina where a
compact closed-form dispersion relation is derived by
separating thermoelastic symmetric and antisymmetric
modes using trigonometric functions through the lamina
thickness. A modified exponential form in the thickness
direction is projected for deriving the dispersion relation
for a composite laminate, with special emphasis on the
symmetric laminates.
Methods
Mathematical formulation
Consider the Cartesian coordinate system with the
direction of z-axis normal to the mid-plane of a compos-
ite heat-conducting laminate spanned by x- and y-axes.
Outer surfaces of the laminate are at z = ± d/2. Thermoe-
lastic Lamb waves propagate in an arbitrary direction θ,
which is defined in the counterclockwise relative to the
x-axis.
Constitutive equations for the linear thermoelastic

anisotropic materials in the context of generalized thermo-
elasticity are stress-strain-temperature relations

σ ij ¼ cijkl εkl − βijT ð1Þ

where βij = cijklαkl, i, j, k, l = 1, 2, 3.
Each layer of the composite laminate with an arbitrary

orientation in the global coordinate system (x, y, z) is
considered as a monoclinic material having x-y as a plane
of symmetry. The stress-strain and temperature relations
for monoclinic material therefore take the following
matrix form:
σxx
σyy
σzz
σyz
σxz
σxy

2
6666664

3
7777775
¼

c11 c12 c13 0 0 c16
c12 c22 c23 0 0 c26
c13 c23 c33 0 0 c36
0 0 0 c44 c45 0
0 0 0 c45 c55 0
c16 c26 c36 0 0 c66

2
6666664

3
7777775

εxx
εyy
εzz
εyz
εxz
εxy

2
6666664

3
7777775
−

βxx
βyy
βzz
0
0
βxy

2
6666664

3
7777775
T

ð2Þ
where, since σij, εkl, αkl and Cijkl are tensors, and we are
conducting analysis in the global (x, y, z) co-ordinates,
any orthogonal transformation of the primed to the
non-primed co-ordinates, i.e., (x′, y′, z′) to (x, y, z) trans-
forms according to (3).
Generally, when the global coordinate system (x, y, z)

does not coincide with the principal material coordinate
system (x′, y′, z′) but makes an angle ϕ with the z-axis, the
stiffness matrix cijkl (cij) system can be obtained from the

stiffness matrix c′ijkl c′ij
� �

system by using transformations

c11 ¼ c′11u
4 þ c′22v

4 þ 2 c′12 þ 2c′66
� �

u2v2;

c12 ¼ c′11 þ c′22−4c
′
66

� �
u2v2 þ c′12 u4 þ v4ð Þ;

c13 ¼ c′13u
2 þ c′23v

2; c16 ¼ c′11−c
′
12−2c

′
66

� �
u3v

þ c′12−c
′
22 þ 2c′66

� �
v3u;

c22 ¼ c′11v
4 þ c′22u

4 þ 2 c′12 þ 2c′66
� �

u2v2;

c23 ¼ c′23u
2 þ c′13v

2;

c26 ¼ c′11−c
′
12−2c

′
66

� �
uv3 þ c′12−c

′
22 þ 2c′66

� �
vu3;

c33 ¼ c′33; c36 ¼ c′23−c
′
13

� �
uv; c45 ¼ c′44−c

′
55

� �
uv;

c44 ¼ c′44u
2 þ c′55v

2; c55 ¼ c′55u
2 þ c′44v

2;

c66 ¼ c′11 þ c′22−2c
′
12−2c

′
66

� �
u2v2 þ c′16 u4 þ v4ð Þ;

α12 ¼ α′33−α
′
11

� �
uv; βxx ¼ β′xxu

2 þ β′zzv
2;

βyy ¼ β′xxv
2 þ β′zzu

2; βxy ¼ β′zz−β
′
xx

� �
uv; βzz ¼ β′zz

ð3Þ

where u = cos φ and v = sin φ.
The linear strain-displacement relations are

εxy ¼ 1
2

∂u
∂y

þ ∂v
∂x

� �
; εyz ¼ 1

2
∂v
∂z

þ ∂w
∂y

� �
;

εzx ¼ 1
2

∂u
∂z

þ ∂w
∂x

� �
; εxx ¼ ∂u

∂x
;

εyy ¼ ∂v
∂y

; εzz ¼ ∂w
∂z

ð4Þ

The summation convention is implied; u, v and w are
the displacements in the x, y, and z directions and σij and
εij are the stress and strain tensors, respectively; βij is the
thermal modulus; αij is the thermal expansion tensor; T is
the temperature; and the fourth-order tensor of the elasti-
city Cijkl satisfies the (Green) symmetry conditions:
cijkl = cklij = cijlk = cjikl, εij = εji and αij = αji, βij = βji,Kij =Kji
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The equations of motion and energy are given by

cijkl
∂2uk
∂xj∂xl

− βij
∂T
∂xj

� 	
¼ ρ

∂2ui
∂t2

ð5Þ

Kij
∂2T
∂xi∂xj

− ρCe
∂T
∂t

þ τ0
∂2T
∂2t

� �
¼ T 0βij

∂
∂t

þ τ0
∂2

∂2t

� �
∂ui
∂xj

ð6Þ

where ρ is the density, t is the time, Kij are the thermal
conductivities, Ce and τ0 are respectively the specific
heat at constant strain, and thermal relaxation time.

Analysis
For transient waves propagating in the x-y plane of the
plate in a direction of angle ϕ with respect to the x axis,
the displacements have the form

u1; u2;u3;Tð Þ ¼ U zð Þ;V zð Þ;W zð Þ;Θ zð Þð Þei ℓx xþℓyyð Þ−ωt½ �
�i ¼

ffiffiffiffiffiffi
−1

p

ð7Þ

where k = [ℓx, ℓy]
T is the wave vector, and its magnitude,

kj j ¼ k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ2x þ ℓ2y

q
¼ ω

cp ;
� ð8Þ

is the wave number, ω is the angular frequency, and cp is
the phase velocity. Here, k points in the direction of
propagation. Substituting Equation 7 into Equations 2 via 4,
we obtain

σxx ¼ c11ℓxU þ c12ℓyV−ic13W ′ þ c16 ℓyU þ ℓxV
� �þ iβxxT

� 

E

σyy ¼ c12ℓxU þ c22ℓyV−ic23W ′ þ c26 ℓyU þ ℓxV
� �þ iℓyT

� 

E

σzz ¼ c13ℓxU þ c23ℓyV−ic33W ′ þ c36 ℓyU þ ℓxV
� �þ iβzT

� 

E

σyz ¼ c44 V ′ þ iℓyW
� �þ c45 U ′ þ iℓxW

� �� 

E

σxz ¼ c45 V ′ þ iℓyW
� �þ c55 U ′ þ iℓxW

� �� 

E

σxy ¼ ½c16ℓxU þ c26ℓyV−ic36W ′

þc66 ℓyU þ ℓxV
� �þ iβxyT �E

ð9aÞ

where E ¼ iei ℓx xþℓyyð Þ−ωt½ �
The thermal gradient

∂T
∂z

¼ Θ′ zð Þei ℓx xþℓyyð Þ−ωt½ � ð9bÞ

where the prime indicates the derivative with respect to
z. Substituting Equations 9 into the equation of motion
and heat conduction Equations 5 and 6 for monoclinic
material, gives
−c55U″−c45V ″ þ c11ℓ
2
x þ 2c16ℓxℓy þ c66ℓ

2
y−ρω

2
� �

U

þ c16ℓ
2
x þ c12 þ c66ð Þℓxℓy þ c26ℓ

2
y

h i
V−i c13 þ c55ð Þℓx½

þ c36 þ c45ð ÞℓyÞ�W ′−i βxℓx þ βxyℓy
h i

Θ ¼ 0

ð10aÞ

−c45U″−c44V ″ þ c16ℓ
2
x þ c12 þ c66ð Þℓxℓy þ c26ℓ

2
y

h i
U

þ c66ℓ
2
x þ 2c26ℓxℓy þ c22ℓ

2
y−ρω

2
� �

V

−i c36 þ c45ð Þℓx þ c23 þ c44ð Þℓy
� 


W ′

−i βxyℓx þ βyℓy
� i

Θ ¼ 0

ð10bÞ

−i c13 þ c55ð Þℓx þ c36 þ c45ð Þℓy
� 


U ′

−i c36 þ c45ð Þℓx þ c23 þ c44ð Þℓy
� 


V ′−c33W″

þ c55ℓ
2
x þ 2c45ℓxℓy þ c44ℓ

2
y−ρω

2
h i

W−βzΘ
′ ¼ 0

−k33Θ″ þ k11ℓ
2
x þ 2k12ℓxℓy þ c22ℓ

2
y−ρc

2
pCeτ

h �
Θ

−T 0ikc2pτ

�
βxℓx þ βxyℓy

� �
U

− βxyℓx þ βyℓy
� �

V þ iβzW
′ ¼ 0

ð10cÞ

Waves in a composite lamina
In an off-axis lamina, the solutions of Equations 10 can
be simply separated into symmetric and antisymmetric
wave modes, which make the analytical representation
particularly simple:

Us;Vs;Ws;Θsð Þ ¼ As cosαz;Bs cosαz;Cs sinαz;Ds cosαzð Þ
Ua;Va;Wa;Θað Þ ¼ Aa sinαz;Ba sinαz;Ca cosαz;Da sinαzð Þ

ð11a; bÞ
Substituting these expressions into the equation of

motion and heat conduction equation is an unknown
variable α to be determined later; moreover, the subscripts s
and a represent symmetric and antisymmetric modes,
respectively. First, substituting the symmetric mode into
the equations of motion, Equation 10 may be expressed in
a matrix form

Γ11−ρc2p Γ12 Γ13 Γ14

Γ12 Γ22−ρc2p Γ23 Γ24
�Γ 13 �Γ 23 Γ33−ρc2p Γ34

�Γ 41 �Γ 42 Γ43 Γ44−
ρω2CeT 0τ

T0ω2τ

2
666664

3
777775

As

Bs

Cs

Ds

2
664

3
775 ¼ 0

ð12Þ
where the bar indicates complex conjugate. The ele-
ments in the above matrix defined by (Γ − ρω2Ι) are as
follows:
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Γ11 ¼ c11ℓ
2
x þ 2c16ℓxℓy þ c66ℓ

2
y þ c55α2;

Γ12 ¼ c16ℓ
2
x þ c12 þ c66ð Þℓxℓy þ c26ℓ

2
y þ c45α2;

Γ14 ¼ −i βxxℓx þ βxyℓy
h i

;

Γ22 ¼ c66ℓ
2
x þ 2c26ℓxℓy þ c22ℓ

2
y þ c44α2;

Γ23 ¼ −i c36 þ c45ð Þlx þ c23 þ c44ð Þly
� 


α;

Γ24 ¼ −i βxyℓx þ βyyℓy
h i

;

Γ31 ¼ i c13 þ c55ð Þℓx þ c36 þ c45ð Þℓy
� 


α ¼ �Γ 13;
Γ32 ¼ i c36 þ c45ð Þℓx þ c23 þ c44ð Þℓy

� 

α ¼ �Γ 23;

Γ33 ¼ c55ℓ
2
x þ 2c45ℓxℓy þ c44ℓ

2
y þ c33α2;

Γ34 ¼ βzα;

Γ41 ¼ i βxℓx þ βxyℓy
� �

¼ �Γ 14; Γ41 ¼ i βxxℓx þ βxyℓy
� �

¼ �Γ 14;

Γ42 ¼ i βxyℓx þ βyyℓy
� �

¼ �Γ 24;

Γ43 ¼ βzzα ¼ Γ34;

Γ44 ¼ − k11ℓ
2
x þ 2k12ℓxℓy þ k22ℓ

2
y þ k33α2

h i
=T0ω2τ;

τ ¼ τ0 þ i
ω=

ð13Þ
For nontrivial solutions of As,Bs,Cs andDs in Equation 12,

the determinant of the 4 × 4 matrix vanishes, which leads
to the following eight-degree polynomial in terms of α:

P0α8 þ P1 þ εC0ð Þα6 þ P2 þ εC1ð Þα4
þ P3 þ εC2ð Þα2 þ P4 þ εC3ð Þ ¼ 0

ð14Þ

Since Equation 14 is a biquadratic equation in α2, it
has four roots for α2 (αj, j = 1, 2, 3, 4).
Hence, the eight roots for α can be arranged in four

pairs as

αjþ1 ¼ −αj; j ¼ 1; 3; 5; 7ð Þ ð15Þ
In Equation 14, ε is a coupling constant, if coupling

constant is zero, then Equation 14 reduces to

P0α
8 þ P1α

6 þ P2α
4 þ P3α

2 þ P4 ¼ 0;

P0 ¼ c245c33−c33c44c55
� �

k33

P1 ¼ c33c44c55−c245c33
� �

F4

þ
c245−c44c55
� �

F3−c33c55F2−c33c44F1

þðc55F23−c45F13ÞF32 þ c44F13−c45F23ð ÞF31

þ2c33c45F12

)
k33

8<
:

P2 ¼ c44c55−c245
� �

F3 þ c33c55F2 þ c33c44F1−2c33c45F12

− c44F13−c45F23ð ÞF31− c55F23−c45F13ð ÞF32

� �
F4

þ F32F23−c44F3−c33F2ð ÞF1 þ F31F13−c55F3ð ÞF2

þ2c45F12F3− F13F32 þ F23F31ð ÞF12 þ c33F2
12

� �
k33

P3 ¼ c55F2 þ c44F1−2c45F12ð ÞF3 þ c33F1−F31F13ð ÞF2

þ F13F12−F1F23ð ÞF32 þ F12F23F31−c33F2
12

� �
F4

− F1F2−F2
12

� �
F3k33

P4 ¼ F1F2−F2
12

� �
F3F4

C0 ¼ c245−c44c55
� �

F34F43
C1 ¼ c33c55F42−c33c45F41 þ c45F31F43−c55F32F43ð Þ −F24ð Þ
þ 2c45F12−c55F2−c44F1ð ÞF34F43

þ c44F14F31−c45F14F32ð ÞF43

þ c44F13−c45F23ð ÞF34F41−c33c44F14F41

þ c55F23−c45F13ð ÞF34F42 þ c33c45F14F42

C2 ¼ c33F42−F43F32ð ÞF1 þ c55F42−c45F41ð ÞF3

þ F13F32−c33F12ð ÞF41 þ F12F43−F13F42ð ÞF31

� �
−F24ð Þ

þ F23F42−F2F43ð ÞF34F1

þ F31F14F43 þ F13F41F34−c33F14F41ð ÞF2

þ F23F32−c44F3ð ÞF14F41

þ F12F34−F14F32ð ÞF43F12

− F13F42 þ F23F41ð ÞF12F34

þ c45F3 þ c33F12−F31F23ð ÞF14F42

C3 ¼ F3 F41F12−F1F42ð ÞF24−F14F3 F41F2−F42F12ð Þ

F12 ¼ c16ℓ
2
x þ c12 þ c66ð Þℓxℓy þ c26ℓ

2
y ;

F13 ¼ −i c13 þ c55ð Þℓx þ c36 þ c45ð Þℓy
� �

F14 ¼ −i βxxℓx þ βxyℓy
� �

;

F24 ¼ −i βxyℓx þ βyyℓy
� �

F23 ¼ −i c36 þ c45ð Þℓx þ c23 þ c44ð Þℓy
� �

F1 ¼ c11ℓ
2
x þ 2c16ℓxℓy þ c66ℓ

2
y ;

F2 ¼ c66ℓ
2
x þ 2c26ℓxℓy þ c22ℓ

2
y

F3 ¼ c55ℓ
2
x þ 2c45c16ℓxℓy þ c44ℓ

2
y ;

F4 ¼ − K 11ℓ
2
x þ 2K12ℓxℓy þ K22ℓ

2
y

� �

F21 ¼ c16ℓ
2
x þ c12 þ c66ð Þℓxℓy þ c26ℓ

2
y ¼ F12;

F31 ¼ i c13 þ c55ð Þℓx þ c36 þ c45ð Þℓy
� �

F32 ¼ i c36 þ c45ð Þℓx þ c23 þ c44ð Þℓy
� �

;

F11 ¼ i βxxℓx þ βxyℓy
� �

;

F42 ¼ i βxyℓx þ βyyℓy
� �

; F34 ¼ F43 ¼ βzz:

Here ε is a coupling parameter, and for each ξj, in sym-
metric modes, As, Bs,Cs, and Ds can be expressed in
terms of As via Equation 12 as

Bs ¼ Δ1=Δ ¼ RAs;Cs ¼ Δ2=Δ ¼ iSAs;Ds

¼ Δ3=Δ ¼ ΩAs ð16Þ

Where

Δ ¼ c33c44F14−c33c45F24 þ c45F23−c44F13ð ÞF34ð Þα4
þ ð c33F2 þ c44F3−F23F32ð ÞF14 þ F12F23−F2F13ð ÞF34

þ F13F32−c45F3−c33F12ð ÞF24Þα2 þ F14F2−F24F12ð ÞF3

Δ1 ¼ c33c55F24−c33c45F14 þ c45F13−c55F23ð ÞF34ð Þα4
þ ð c33F1 þ c55F3−F13F31ð ÞF24 þ F12F13−F1F23ð ÞF34

þ F13F23−c45F3−c33F12ð ÞF14Þα2 þ F24F1−F14F12ð ÞF3



Verma International Journal of Mechanical and Materials Engineering 2014, 1:4 Page 6 of 10
http://www.springer.com/40712/content/1/1/4
Δ2 ¼ α
c44c55−c245
� �

F34α4

þ c45F14−c55F24ð ÞF32 þ c45F24−c44F14ð ÞF31

þ c44F1 þ c55F2−2c45F12ð ÞF34

� �
α2

8<
:

9=
;

þ F12F24−F2F14ð ÞF31 þ F12F14−F1F24ð ÞF32

þ F1F2−F2
12

� �
F34

Δ3 ¼ c245c33−c33c44c55
� �

α6

þ c245−c44c55
� �

F3 þ c44F13−c45F23ð ÞF31

þ c55F23−c45F13ð ÞF32 þ c33 2F12c45−c55F2−c44F1ð Þ
� �

α4

þ ð c33F12−F23F31 þ 2c45F3−F13F32ð ÞF12 þ F2F13F31

þF1F23F32−c33F1F2−c55F2F3−c44F1F3Þα2 þ F2
12
F3−F1F2F3

and similarly for antisymmetric modes, Ba = RAa,
Ca = − iSAa and Da =ΩAa. With the above equations, the
polarization displacement vectors and temperature are de-
termined from the three roots. Consequently, the general
solution of Equation 11 is

Us;Vs;Ws;Θsð Þ ¼
X4
j¼1

Asj cosαjz;Rj cosαjz;
�
iSj sinαjz;Ωj cosαjzg

Ua;Va;Wa;Θað Þ ¼
X4
j¼1

Aaj sinαjz;Rj sinαjz;
�
−iSj cosαjz;Ωj sinαjzg

ð17a; bÞ

Substituting Equation 17 into Equation 9, the expres-
sion of σzz; σyz; σxz; and ∂T

∂z with traction and thermal
gradient-free boundary conditions on the top and bot-
tom surfaces z ¼ �h

2= , then σzz; σyz; σxz; and ∂T
∂z may be

expressed for the symmetric and antisymmetric modes
respectively as

σzz; σyz; σxz;
∂T
∂z

� �
jz¼h=2 ¼

X4
j¼1

Ν1j
cosαjz
sinαjz

� �
;Ν2j

sinαjz
cosαjz

� �
;

Ν3j
sinαjz
cosαjz

� �
;Ν4j

sinαjz
cosαjz

� �
8>><
>>:

9>>=
>>;Aj

ð18Þ

Ν1j ¼ c13ℓx þ c23ℓyRj þ c33αjSj þ c36 ℓy þ ℓxRj
� �

þ iβzΩj

Ν2j ¼ c44 αjRj þ ℓySj
� �þ c45 αj þ iℓxSj

� �
Ν3j ¼ c45 ℓjRj þ αySj

� �þ c55 αj þ ℓxSj
� �

Ν4j ¼ −αjΩj ð19Þ

The existence of a nontrivial solution of Equation 18
leads to closed-form dispersion relations as

Ν11G1 tan α1h=2þ χð Þ þ Ν12G3 tan α2h=2þ χð Þ
þΝ13G5 tan α3h=2þ χð Þ þ Ν14G7 tan α4h=2þ χð Þ ¼ 0

ð20Þ
G1 ¼
Ν22 Ν23 Ν24

Ν32 Ν33 Ν34

Ν42 Ν43 Ν44

�������
�������;

G2 ¼
Ν21 Ν23 Ν24

Ν31 Ν33 Ν34

Ν41 Ν43 Ν44

�������
�������;

G3 ¼
Ν21 Ν22 Ν24

Ν31 Ν32 Ν34

Ν41 Ν42 Ν44

�������
�������;

G4 ¼
Ν21 Ν22 Ν23

Ν31 Ν32 Ν33

Ν41 Ν42 Ν43

�������
������� ð21Þ

where χ = 0 and χ = π/2 represent antisymmetric and sym-
metric Lamb wave modes, respectively. Equation 20 is a
transcendental equation implicitly relating ω to k. For
a fixed θ, a numerical iterative root-finding method is
employed to compute the admissible ω for a range of k
values, leading to dispersion relations of Lamb wave modes
in the direction of propagation. Furthermore, in general, the
frequency ω of each mode is the single-valued function of k.

Waves in a composite laminate
In formulating thermoelastic Lamb waves in a heat-
conducting laminate, the interfaces between layers are
assumed to be perfectly bonded. The displacement and
temperature components of each layer in the z axis
Equation 11 needs to be modified in exponential forms
to accommodate the inhomogeneity of the multilayered
laminates.

U ¼ Aeiαz;V ¼ Beiαz;W ¼ −iCeiαz ð22Þ

Θs ¼ Deiαz ð23Þ
Substituting these expressions into the equations of

motion, Equation 10 may be rearranged in a matrix form.
For nontrivial solutions of A, B,C and D in Equation 12,

the determinant of the 4 × 4 matrix vanishes,

Γ11−ρc2p Γ12 Γ13 Γ14
Γ12 Γ22−ρc2p Γ23 Γ24
�Γ13 �Γ23 Γ33−ρc2p Γ34

�Γ41 �Γ42 Γ43 Γ44−
ρω2CeT0τ

T0ω2τ

2
666664

3
777775

A
B
C
D

2
664

3
775 ¼ 0

ð24Þ
giving the following eight-degree polynomial in terms of
α, which is a biquadratic equation, it has four roots for
α2 (αj, j = 1, 2, 3, 4), and these eight roots for α can be
arranged in four pairs as

αjþ1 ¼ −αj; j ¼ 1; 3; 5; 7ð Þ ð25Þ
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For each αj, B,C and D can be expressed in terms of A
via Equation 23 as B = RA,C = − SA and D =ΩA.
Thus, the general solution of Equations 22 and 23 in

each lamina is

U ;V ;W ;Tð Þ ¼ E
X8
j¼1

Aj;RjAj; SjAj;ΩjAj
� �

eikαjz ð26Þ

The inter-laminar stress and thermal gradient components,
σzz, σyz, σxz and ∂T

∂z in each lamina may be expressed as

σzz; σyz; σxz;
∂T
∂z

� �
jz¼�h=2 ¼ ikei½ð ℓx xþℓyyð Þ−ωt½ �X8

j¼1

Ν1j;Ν2j;Ν3j;Ν4j
� �

Aje
ikαjz

ð27Þ
Generally, there are two methods, namely transfer matrix

method and assemble matrix method, for obtaining the
dispersion relations in laminates. Although the procedures
of these two methods seem different, they are identical in
principle by both satisfying traction-free boundary condi-
tions on the outer surfaces of the laminate and continuity
of interface conditions between two adjacent laminas in a
different manner. Both methods can calculate dispersion
curves in a general laminate with an arbitrary stacking
sequence. Using Equations 22 and 23, it may be observed
that symmetric and antisymmetric wave modes in general
laminates cannot be decoupled. However, in designing the
composite structures, symmetric laminates are practically
used. A robust method is proposed to separate the two
types of wave modes by imposing boundary conditions at
both top and mid-plane surface. Traction-free boundary
conditions on the top surface of the laminate are given by

σzz; σyz; σxz;
∂T
∂z

� �
z¼h=2 ¼ 0
�� ð28Þ

Because of the symmetric geometry and symmetric
material property of the laminate, only half of the laminate
needs to be considered and then the following conditions
on the stress and displacement components at the mid-
plane for symmetric modes are imposed

w; σyz; σxz;
∂T
∂z

� �
z¼0 ¼ 0j ð29Þ

Likewise, the boundary conditions of antisymmetric
modes at the mid-plane are

u; v; σzz;Tð Þ z¼0 ¼ 0j ð30Þ
By imposing displacement and stress continuity condi-

tions along the interfaces of half lay-up of an N-layered
laminate, a total of 4N equations are constructed if the
assemble matrix method is used. Then set the determin-
ant of the 4N equations to zero, and numerically solve the
resulting transcendental equation for the dispersion
relations of Lamb waves in symmetric laminates.

Results and discussion
The formulation and analysis described in the preceding
sections has been implemented, because it can seamlessly
combine symbolic and numeric computation. Dispersion
relation between ω and k can be symbolically represented
by an implicit functional form f(ω, k) = 0. This relation
may be explicitly solved in the form of real roots of
ω =ψ(k). There are an infinite number of possible solutions,
in general, which correspond to different wave modes. In
case of plane waves, phase velocity vector is defined as

cp ¼ ω
k

� �
k
kj j ¼ ω

k2

� �
k. The vectors of velocity curves in the

direction of a given k represent the admissible phase vel-
ocity dispersion of different wave modes. Dimensionless
wave number (kd/cT) and dimensionless phase velocity
cp/cT employed to normalize the phase velocity, respect-

ively. Furthermore, cT defined as cT ¼ ffiffiffiffiffiffiffiffiffiffiffi
c66=ρ

p
is the

transverse (in-plane shear) wave velocity in the lamina.
The material used in this study is orthotropic and are con-
sidered from Hawwa and Nayfeh (1995). Numerical exam-
ples demonstrate dispersion curves and characteristic
curves in the lamina and laminate (Figures 1, 2, 3 and 4).
Distinction between mode types is quite artificial, when

we study thermoelastic waves in anisotropic plates, as the
equation for thermal and elastic wave modes, i.e., quasi-
longitudinal and quasi-transverse and shear horizontal
modes, will generally be coupled with quasi-thermal modes.
Also, for wave propagation in the direction of symmetry,
some wave types revert to pure modes, leading to a simpler
characteristic equation of lower order. A consequence of
thermoelastic anisotropy in media is the loss of pure wave
modes for general propagation direction. At low wave
number limits, modes are found to highly influence and
they vary with the thermal relaxation times. At relatively
low values of the wave number, little change is seen in these
values. As the wave number increases, other high modes
appear; one of the modes seems to be associated with quick
change in the slope of the mode. It is also observed that
with changes in thermal relaxation times, lower modes have
more influence whereas a small variation is noticed in the
high modes. From these figures, it is observed that at low
wave number limits, although wave speed modes are
dispersive, but are different from the coupled case. Thus, in
generalized thermoelasticity, at low values of the wave
number, only the lower modes get affected and the little
change is seen at relatively high values of the wave number.
The low-value region of the wave number is found to be of
more physical interest in generalized thermoelasticity.
Further, since high wave number limits have no effect in
generalized thermoelasticity, then the second sound effects
are short lived.



Figure 1 Dispersion curves of antisymmetric modes when thermal relaxation time = 2 × 10−7 s.
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Conclusions
Propagation of guided thermoelastic waves in a homoge-
neous, orthotropic, thermally conducting plate is investi-
gated within the framework of the generalized theory of
thermoelasticity proposed by Lord and Shulman (1967).
Figure 2 Dispersion curves of symmetric modes when thermal relaxa
This theory includes a thermal relaxation time in the heat
conduction equation in order to model the finite speed of
the thermal wave. The results show that both elastic and
thermal modes are attenuated, the thermal modes exhibit
much larger attenuation than the elastic modes. The
tion time = 2 × 10−7 s.



Figure 3 Dispersion curves of antisymmetric modes when thermal relaxation time = 2 × 10−6 s.
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attenuation of the former is quite small. The results agree
with previous observations by Hawwa and Nayfeh (1996).
The coupling term is generally small for all materials and
can be neglected. Neglecting the coupling term simplifies
the analysis without noticeable effect on the frequency
spectrum as we saw earlier. Because of the small relax-
ation time exhibited by the materials under consideration,
the thermal wave modes have much larger phase speeds
than the elastic modes. The effect of increasing the relax-
ation time is to lower the speeds of the thermal modes.
Figure 4 Dispersion curves of symmetric modes when thermal relaxa
The effect of anisotropy of the material is quite pro-
nounced on waves propagating in different directions
along the plate. Thus, it is important to consider the an-
isotropy of the material in order to accurately model the
propagation characteristics for material characterization
and transient response. Employing a three-dimensional
theory of thermoelasticity, solutions of thermoelastic
Lamb waves in a lamina within the framework of the gen-
eralized theory of thermoelasticity proposed by Lord and
Shulman (1967) are established, and obtained results are
tion time = 2 × 10−6 s.
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extended to a general laminate with an arbitrary lay-up.
Employing boundary conditions on both mid-plane and
top surfaces is developed to decouple the wave modes for
symmetric laminates.

Competing interests
The author declare that he has no significant competing financial,
professional or personal interests that might have influenced the
performance of the work described in this manuscript.

Received: 2 March 2014 Accepted: 13 May 2014

References
AN, A -e-n, & Askar Nadia, A. (2014). Calculation of bulk acoustic wave propagation

velocities in trigonal piezoelectric smart materials, applied mathematics &
information sciences. Sciences, 8(4), 1–8.

Abrate, S. (1998). Impact on composite structures. Cambridge: Cambridge
University Press.

Achenbach, JD. (1973). Wave propagation in elastic solids. Amsterdam:
North-Holland.

Banerjee, DK, & Pao, YK. (1974). Thermoelastic waves in anisotropic solids. Journal
of Acoustical Society of America, 56, 1444–1454.

Brekhovskikh, LM. (1960). Waves in layered media. New York: Academic Press.
Chadwick, P. (1960). Thermoelasticity: the Dynamic Theory. In R Hill & IN Sneddon

(Eds.), Progress in solid mechanics. North Holland, Amsterdam.
Chadwick, P. (1979). Basic properties of plane harmonic waves in a presented

heat conducting elastic material. Journal of Thermal Stresses, 2, 193.
Chadwick, P, & Seet, LTC. (1970). Wave propagation in transversely isotropic heat

conducting elastic materials. Mathematica, 17, 225.
Chandrasekharaiah, DS. (1986). Thermoelasticity with second sound - A review.

Applied Mechanics Review, 39, 355–376.
Chandrasekharaiah, DS. (1998). Hyperbolic thermoelasticity-a review of recent

literature. Applied Mechanics Review, 51(12), 705–729.
Cementi, DE. (1997). Guided waves in plates and their use in materials

characterizations. Applied Mechanics Review, 50(5), 247–283.
Choi, HY, & Chang, FK. (1992). A model for predicting damage in graphite/epoxy

laminated composites resulting from low-velocity point impact. Journal of
Composite Materials, 26(14), 2134–2169.

Choi, HY, Downs, RJ, & Chang, FK. (1991a). A new approach toward
understanding damage mechanisms and mechanics of laminated
composites due to low-velocity impact: Part I – experiments. Journal of
Composite Materials, 25, 992–1011.

Choi, HY, Downs, RJ, & Chang, FK. (1991b). A new approach toward
understanding damage mechanisms and mechanics of laminated
composites due to low-velocity imapct: Part II – analysis. Journal of Composite
Materials, 25, 1012–1038.

Chawla, KK. (1987). Composite materials (pp. 189–191). New York: Springer-Verlag.
Dhaliwal, RS, & Sherief, HH. (1980). Generalized thermoelasticity for anisotropic

media. Quarterly Applied Mathematics, 38, 1–8.
Ewing, WM, Jardetzky, WS, & Press, F. (1957). Elastic waves in layered media. New

York: McGraw Hill.
Fukuda, H, Katoh, F, & Yasuda, J. (1996). Low velocity impact damage of carbon

fiber reinforced thermoplastics (pp. 139–145). Bakelma: Progress in Durability.
Analysis of Composite Systems.

Green, AE, & Lindsay, KA. (1972). Thermoelasticity. Journal of Elasticity, 2, 1–7.
Halpin, JC. (1992). Primer of composite material analysis (2nd ed., pp. 206–207).

Lancaster: Technomic Publishing.
Hawwa, MA, & Nayfeh, AH. (1996). Thermoelastic waves in laminated composites

plate with a second sound effect. Journal of Appied Physics, 80, 2733–2738.
Hawwa, MA, & Nayfeh, AH. (1995). The general problem of thermoelastic waves

in anisotropic periodically laminated composites. Composite Engineering, 5,
1499–1517.

Hayhurst, CJ, Hiermaier, SJ, Clegg, RA, Riedel, W, & Lambert, M. (1999).
Development of material models for nextel and kevlar-epoxy for high pressures
and strain rates (pp. 16–19). Huntsville, AL, Nov: Hypervelocity Impact
Symposium.

Hiermaie, SJ, Riedel, W, Clegg, RA, Hayhurst, CJ, Wentzel, CM. (1999). Advanced
material models for hypervelocity impact simulations AMMHIS. European Space
Agency, Contract Report, EMI-Report br.E43/99, 30 July.
Jones, RM. (1975). Mechanics of composite materials. Washington: Scripta Book Co.
Jones, RM. (1999). Mechanics of composite materials, Vol. 2–17 (2nd ed.,

pp. 190–221). New York: Taylor & Francis.
Liu, GR, Tani, J, Watanabe, K, & Ohyoshi, T. (1990). Lamb propagation waves in

anisotropic laminate. ASME, Journal of Applied Mechanics, 57, 923–929.
Lord, HW, & Shulman, Y. (1967). A generalized dynamical theory of

thermoelasticity. Journal of Mechanics and physics of solids, 15, 299–309.
Nayfeh, AH. (1995). Wave propagation in layered anisotropic media with

applications to composites. Amsterdam: Elsevier.
Nayfeh, AH, & Chementi, DE. (1989). Free wave propagation in plates of general

anisotropic media. Journal of Applied Mechanics, 56, 881–886.
Nayfeh, AH, & Chementi, DE. (1991). General problem of elastic wave

propagation in multilayered anisotropic media. Journal of Acoustical Society
of America, 89, 1521–1531.

Nowacki, W. (1975). Dynamic problems of thermoelasticity. Leyden,
TheNetherlands: Noordho.

Nowacki, W. (1986). Thermoelasticity (2nd ed.). Oxford: Pergamon Press.
Thangjitham, S, & Choi, HJ. (1991). Thermal stresses in a multilayered anisotropic

medium. ASME, Journal of Applied Mechanics, 58(4), 1021–1027.
Tao, D, & Prevost, JH. (1984). Relaxation effects on generalized thermoelastic

waves. Journal of Thermal Stresses, 7, 79–89.
Vel, SS, & Batra, RC. (2001). Generalized plane strain thermoelastic deformation of

laminated anisotropic thick plates. International Journal of Solids and
Structures, 38, 1395–1414.

Vel, SS, & Batra, RC. (1999). Analytical solution for rectangular thick laminated
plates subjected to arbitrary boundary conditions. AIAA Journal, 37,
1464–1473.

Vel, SS, & Batra, RC. (2000). The generalized plane strain deformations of
anisotropic composite laminated thick plates. International Journal of Solids
and Structures, 37, 715–733.

Verma, KL, Hasebe, N, & Sethuraman, R. (1999). Dynamic distribution of displacements
and thermal stresses in multilayered media in generalized thermoelasticity. Proc. of
third International Congress on Thermal Stresses, 577–580. Poland.

Verma, KL. (2001). Thermoelastic vibrations of transversely isotropic plate with
thermal relaxations. International Journal of Solids and Structures, 38,
8529–8546.

Verma, KL, & Hasebe, N. (2001). Wave propagation in plates of general anisotropic
media in generalized thermoelasticity. International Journal of Engineering
Science, 39(15), 1739–1763.

Verma, KL, & Hasebe, N. (2002). Wave propagation in transversely isotropic plates
in generalized thermoelasticity. Archive of Applied Mechanics,
72(6–7), 470–482.

Verma, KL. (2002). On the propagation of waves in layered anisotropic media in
generalized thermoelasticity. International Journal of Engineering Science,
40(18), 2077–2096.

Verma, KL. (2012). On the thermoelastic waves in anisotropic laminated composite
plates, Mechanics of Nano, Micro and Macro Composite Structures; Politecnico
di Torino. 18–20 June 2012.

Wang, L, & Yuan, FG. (2005). Damage identification in a composite plate using
pre stack reverse-time migration technique. Structural Health Monitoring,
4(3), 195–211.

Wang, L, & Yuan, FG. (2006). Experimental study of lamb wave propagation in
composite laminates, smart structures and materials, sensors and smart
structures technologies for civil, mechanical, and aerospace systems, edited
by Masayoshi Tomizuka, et al. Proceedings of SPIE, 6174, 617442.

doi:10.1186/s40712-014-0004-9
Cite this article as: Verma: Thermoelastic symmetric and antisymmetric
wave modes with trigonometric functions in laminated plates.
International Journal of Mechanical and Materials Engineering 2014 1:4.


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Mathematical formulation
	Analysis
	Waves in a composite lamina
	Waves in a composite laminate

	Results and discussion
	Conclusions
	Competing interests
	References

