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Abstract

Background: The principle aim of the present investigation is to study the heat transfer analysis of steady two
dimensional flow of conducting dusty fluid over a stretching cylinder immersed in a porous media under the
influence of non-uniform source/sink.

Methods: Governing partial differential equations are reduced into coupled non-linear ordinary differential
equations using suitable similarity transformations. The resulting system of equations are then solved Numerically
with efficient Runge Kutta Fehlberg-45 Method.

Results: Graphical display of the obtained numerical solution is performed to illustrate the influence of various flow
controlling parameters like curvature parameter, magnetic parameter, porous parameter, Prandtl number, heat
source/sink parameter, fluid-particle interaction parameter on velocity and temperature distributions of both fluid and
dust phases. The numerical results for the skin-friction coefficient and Nusselt number are also presented. Finally, the
obtained numerical solutions are compared and found to be in good agreement with previously published results
under special cases.

Conclusion: The velocity within the boundary layer in the case of cylinder is larger than the flat surface and both the
magnitude of the skin friction coefficient and heat transfer rate at the surface are higher for cylinder when compared
to that of flat plate.

Keywords: Dusty fluid; Stretching cylinder; Non-uniform heat source/sink; Fluid-particle interaction parameter;
Numerical solution

Background
The study of hydrodynamic flow and heat transfer over a
stretching cylinder has gained considerable attention due
to its applications in industries and important bearings
on several technological processes like thermal design
of buildings, electronic cooling, solar collectors, drilling
operations, commercial refrigeration, geothermal power
generation, float glass production, heat-treated materials
traveling between a feed roll and a wind-up roll, aerody-
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namic extrusion of plastic sheets, glass fiber and paper
production, cooling of an infinite metallic plate in a cool-
ing bath, manufacturing of polymeric sheets, etc. Due
to these practical and industrial applications, the prob-
lem of boundary layer analysis over a stretching solid
surfaces has become an area of attention for scientists,
engineers, and mathematicians as well. Flow over a cylin-
der is generally considered as two dimensional, when
radius of the cylinder is large enough compared to the
boundary layer thickness. To study the viscous fluid flow
and heat transfer outside a hollow stretching cylinder
has importance in extrusion processes. Using local non-
similarity transformations, Chen and Mucoglu (1975)
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investigated the effects of mixed convection flow over a
vertical slender cylinder due to thermal diffusion with
prescribed wall temperature. Wang (1988) obtained the
exact solution of viscous flow and heat transfer due to
uniformly stretching cylinder. Kumari and Nath (2004)
analyzed the effects of localized cooling/heating and
injection/suction on the mixed convection flow on a
thin vertical cylinder. Chang (2008) numerically inves-
tigated the flow and heat transfer characteristics of
natural convection in a micropolar fluid flow along a
vertical slender hollow circular cylinder with conduction
effects.
The hydrodynamic flow and heat transfer in porous

medium have become hot topics of research for quite a
long time, which is reflected in number of articles being
published. Aydin and Kaya (2013) studied MHD mixed
convection of a viscous dissipating fluid about a ver-
tical slender cylinder. Mukhopadhyay and Ishak (2012)
presented a result on the distribution of a solute under-
going a first-order chemical reaction in an axisymmetric
laminar boundary layer flow along a stretching cylin-
der with velocity slip condition at the boundary instead
of no-slip condition. A steady laminar flow caused by a
stretching cylinder immersed in an incompressible vis-
cous fluid with prescribed surface heat flux was inves-
tigated by Bachok and Ishak (2010). Mukhopadhyay and
Ishak (2012) studied an axisymmetric laminar boundary
layer flow and mixed convection of a viscous incompress-
ible fluid and heat transfer over a stretching cylinder
embedded in a porous medium. Chauhan et al. (1961)
have investigated magnetohydrodynamic slip flow and
heat transfer in a porous medium over a stretching
cylinder by homotophy analysis method. Further, various
aspects of heat transfer over a stretching cylinder in dif-
ferent geometrical models have been studied widely by
many researchers (Ashorynejad et al. 2013; Gorla et al.
2012; Khalili et al. 2010; Mohammadiun et al. 2013;
Mukhopadhyay 2011; Munawar et al. 2012; Rashad et al.
2013; Shateyi and Marewo 2013; Wang 2011; Weidman
and Weidman 2010).
The analysis of two-phase flows in which solid spher-

ical particles are distributed in a fluid is important in
areas like environmental pollution, smoke emission from
vehicles, emission of effluents from industries, cooling
effects of air conditioners, flying ash produced from ther-
mal reactors and formation of raindrops, etc. On the
basis of these applications, Saffman (1962) has formu-
lated the basic equations of motion for fluid carrying small
dust particles in which dust particles are uniformly dis-
tributed. Using the Saffman (1962) model, Soundalgekar
and Gokhale (1984) studied the flow of a dusty gas past
an impulsively started infinite vertical plate by employing
an implicit finite difference technique. Datta and Mishra
(1982) have analyzed the boundary layer flow of a dusty

fluid over a semi-infinite flat plate. Later, Das et al. (1992)
studied the flow of a dusty gas past a uniformly accelerated
horizontal plate. Ganesan and Palani (2004) have obtained
the numerical solution for an unsteady free convection
flow of a dusty gas past a semi-infinite inclined plate
with constant heat flux using an implicit finite difference
method. Flow of a dusty gas past an impulsively started
semi-infinite vertical plate was studied by Kulandaivel
(2010). Vajravelu and Nayfeh (1992) examined hydro-
magnetic flow of a dusty fluid over a stretching sheet.
Recently, Gireesha et al. (2011, 2012, 2013) have obtained
the results for heat transfer analysis on dusty fluid flow
due to linear stretching with various effects like non-
uniform heat source or sink, radiation and viscous dissipa-
tion, etc. In this studies, they were analyzed by two types
of heating processes namely, surface temperature and heat
flux.
Different from our previous investigations, we extended

the work to stretching cylinder. In the present paper, we
try to investigate the flow and heat transfer of an elec-
trically conducting dusty fluid over a stretching cylinder
in porous media. The resulting nonlinear momentum and
energy equations are simplified using similarity transfor-
mations. Numerical solutions have been developed for
the velocity and temperature (PST and PHF). Graphi-
cal results for various values of the flow parameters are
presented to gain thorough insight towards the physics
of the problem. The results have possible technological
applications in liquid-based systems involving stretchable
materials.

Method
Flow analysis of the problem
Consider a steady two-dimensional laminar boundary
layer flow of an incompressible viscous dusty fluid over
a stretching cylinder of radius a in the axial direction.
The z-axis is measured along the axis of the cylinder and
the r-axis is measured in the radial direction as shown in
Figure 1. Two phases to be considered here are a continu-
ous fluid phase interspersed with a discrete solid particu-
late phase. The dust particles are taken to be small enough
and of sufficient number to be treated as a continuum
and allow concepts such as density and velocity to have
physical meaning. And also, they are assumed to be spher-
ical in shape, all having same radius and mass, and are
undeformable. A uniform magnetic field of strength B0
is applied in the radial direction. The magnetic Reynolds
number is assumed to be small so that the induced mag-
netic field is neglected in comparison with the applied
magnetic field.
Under these assumptions, along with the usual bound-

ary layer approximation, the governing equations for
the flow in cylindrical coordinates are as follows
(Mukhopadhyay and Ishak 2012) and (Saffman 1962):
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Figure 1 Schematic representation of boundary layer flow.
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In deriving these equations, the drag force is considered
for the iteration between the fluid and particle phases.
The physical boundary conditions for the flow problem
are given by;

w = Uw(z), u = 0, as, r = a,
w → 0, wp → 0, up → u, ρp → ωp as r → ∞ (6)

It is convenient to employ the following similarity trans-
formations in order to transform the governing equations
into the corresponding ordinary differential equations:

u = −a
r

√
νb
l
f (η) w = Uw(z)f ′(η), η = r2 − a2

2a

√
Uw
νz

,

up = a
r

√
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l
F(η), wp = Uw(z)g(η), ρr = H(η).

(7)

It can be verified that, the above defined similarity
transformations are identically satisfied by the Equation
(1). Substituting (7) in to (2)-(5), we obtain the following
non-linear ordinary differential equations:

(1 + 2ηγ )f ′′′(η)+2γ f ′′(η)−(f ′(η))2+f (η)f ′′(η)+l∗βH(η)(g(η)

−f ′(η))(Q + S)f ′(η) = 0
(8)

F(η)g′(η) − g2(η) − β(f ′(η) − g(η)) = 0 (9)

F(η)F ′′(η) −
(
1 + γ

2ηγ

)
[ F(η)]2 +β[ f ′(η) + F(η)]= 0 (10)

H(η)g(η)+F(η)H ′(η)+H(η)F ′(η)−
(
1+ γ

2ηγ

)
H(η)F(η) = 0 (11)

where a prime denotes differentiation with respect to η.
The transformed dimensionless boundary conditions

become

f (η) = 0 f ′(η) = 1, at, η = 0,

f ′(η) = 0, g(η) = 0, F(η) = −f (η) H(η) = ω as η −→ ∞.

(12)

Heat transfer analysis
The governing boundary layer energy equation for the
two-dimensional dusty fluid flow in the presence of inter-
nal heat generation/absorption for axisymmetric flow is
given by:
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where q′′′ is the space- and temperature-dependent
internal heat generation/absorption (non-uniform heat
source/sink) which can be expressed as

q′′′ =
(
kUw(z)
zν

) [
A ∗ (Tw − T∞)f ′(η) + B∗ (T − T∞)

]
(15)

where A∗ and B∗ are the coefficients of the space-
and temperature-dependent internal heat generation/
absorption. Here, we make a note that A∗ > 0 and B∗ > 0
corresponds to internal heat generation and that A∗ < 0
and B∗ < 0 corresponds to internal heat absorption.
In this paper, we discussed two types of heating process
namely prescribed surface temperature (PST) and pre-
scribed heat flux (PHF case). Here, the prescribed surface
temperature is defined as a quadratic function of z, while
in the case of PHF, it is a the power law heat flux.
We have adopted the following boundary conditions for

solving Equations (13) and (14) in both cases.

T = Tw = T∞ + A
(z
l

)2
at r = 0, (PST)

− k∗ ∂T
∂r

= qw = D
(z
l

)2
at r = 0.(PHF)

T → T∞, Tp → T∞ as y → ∞. (16)

where Tw and T∞ denote the temperature at the wall and
at large distance from the wall, respectively. A and D are
positive constants.
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Table 1 Comparison of the results for the dimensionless temperature gradient θ ′(0) for various values of Pr in the case of
β = 0, Ec = 0

Pr Grubka and Bobba (1985) Abel et al. (2008) Ali (1994) Ishak et al. (2008) Present result

1.0 -1.3333 1.3333 1.3269 1.3333 1.3333

10.0 4.7969 4.7968 4.7969 4.7969 4.7964

We now introduce the following dimensionless fluid
phase temperature θ(η) and dust phase temperature θp(η)

as

θ(η) = T − T∞
Tw − T∞

, θp(η) = Tp − T∞
Tw − T∞

(17)

where T − T∞ = A
( z
l
)2

θ(η) (PST case) and Tw − T∞ =
D
k∗

( z
l
)2 √

ν
c (PHF case).

The boundary layer Equations (13) and (14) on using
(15)-(17), take the following form,

(1 + 2ηγ )θ ′′(η) + Pr
[
f (η)θ(η) − 2f ′(η)θ(η)

]
+2γ θ ′(η) + NPr

ρτTb
(θp − θ)+

NPrEc
ρτv

[ g(η) − f ′(η)]2 +A∗f ′(η) + B∗θ(η) = 0 (18)

2g(η)θp(η) + θp(η) + Cpl
τTCmb

(θp − θ) = 0 (19)

Now, the boundary conditions for θ(η) and θp(η) follows
from (16) and (17) as

θ(η) = 1 at η = 0(PSTcase)
θ ′(η) = −1 at η = 0(PHFcase)

θ(η) → 0, θp(η) → 0, as η → ∞. (20)

The quantities of main interest in such nonlinear prob-
lem, which are important from the engineering point
of view are the skin friction coefficient and the Nusselt
number, which are defined as
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μ

(
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)
r=a
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w
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Using the non-dimensional variables, we obtain

Cf Rex
1
2
x = f ′′(0) (22)
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= −θ ′(0)(PST case) and
Nux√
Rex

= 1
θ(0)

(PHF case) (23)

One can observe that, if γ = 0(a ⇒ ∞), then, the
present problem under consideration (S = 0 and Q − 0)
reduces to boundary layer flow along a stretching flat plate
considered by Gireesha et al. (2011) and if γ = 0 and
S = 0, then, it reduces to the problem of Gireesha et al.
(2012) with λ = 0, i.e., in the absence of the ratio of free

stream velocity parameter to stretching sheet parameter
and that of Gireesha et al. (2013) with a = π

2 (horizontal
stretching sheet) in that paper.

Method of solution
The system of coupled highly non-linear ordinary dif-
ferential Equations (8)-(11) and (18)-(19) subject to the
boundary conditions (12) and (20) have been solved
numerically using Runge-Kutta-Fehlberg 45 method. This
method has been successfully used by the present authors
to solve various problems related to boundary layer flow
and heat transfer. For the validation of the numerical
results obtained in this study, the case when the curvature
parameter is absent (γ = 0, flat plate) has also been con-
sidered and compared with previously published results
available in the literature. Table 1 presents a comparison
of −θ ′(0) for flat plate reported by Grubka and Bobba
(1985), Abel et al. (2008), Ali (1994), Ishak and Nazar
(2008) and the present numerical results. It is clear from
the table that the present numerical results are found to
be in a very good agreement.
In this method, the edge of the boundary layer η∞ has

been chosen as η = 5, which is sufficient to achieve
the far field boundary conditions asymptotically for all
values of the parameters considered. A comprehensive
numerical parametric computations have been carried out
for various values of Curvature parameter, fluid particle
interaction parameter, Prandtl number, heat source/sink

Figure 2 Effect of curvature parameter (γ) on f ′(η).
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Figure 3 Effect of Magnetic parameter (Q) on f ′(η).

parameter, fluid-particle interaction parameter on veloc-
ity, and temperature in both PST and PHF cases, and then,
the results are reported in terms of graphs.

Results and discussion
The numerical solutions are presented through graphs
for physical interpretation of the proposed study. For the
validation of numerical results, we compared our results
with previously published works with the absence of the
curvature parameter and dust particles.
Figure 2 illustrates the effect of curvature parameter (γ)

on both fluid and dust phase velocity profiles. It is quite
evident from Figure 2 that the velocity of the fluid as well
as dust phase corresponding to (γ = 0) is minimum and
the increase of (γ) is to increase the velocity within the
boundary layer. Moreover (γ = 0), the problem reduces

Figure 4 Effect of curvature parameter (γ ) on θ (η) in PST case.

Figure 5 Effect of curvature parameter (γ ) on θ (η) in PHF case.

to flat surface, and hence, the velocity within the boundary
layer in the case of cylinder is larger than the flat sur-
face. It means that the increasing in the cylinder diameter
leads to the decrease in the velocity within the boundary
layer. The effect of magnetic parameter Q on velocity dis-
tributions are depicted as in Figure 3. It reveals that the
increasing values of Q results in the decrease of fluid and
dust phase velocity. This is because application of a trans-
verse magnetic field normal to the flow direction gives rise
to a resistive drag-like force known as Lorentz force acting
in a direction opposite to that of the flow. This has a ten-
dency to reduce fluid transport phenomena. Therefore,
the momentum boundary layer thickness decreases with
increase in Q, and hence, it leads to increase in velocity
gradient.
Figures 4 and 5 illustrates the effect of curvature param-

eter (γ) on the temperature profiles. It is observed from

Figure 6 Effect of Permeable parameter (s) on f ′(η).
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Figure 7 Effect of relaxation parameter (β) on f ′(η).

the plots that increases of values enhance the temperature
of the fluid as well as dust phase. It is also observed from
Figure 5 that the effect of curvature parameter on veloc-
ity field is almost nil within the dynamic region [0, 0.5]. A
crossover is found in Figure 5, for varying the curvature
parameter. The velocity and temperature near the stretch-
ing surface decrease with increasing curvature parameter,
while those far from the stretching surface show the
reverse effect. Figure 6 demonstrates the effects of per-
meability parameter on velocity profiles for both fluid
and dust phase. It is obvious that the presence of porous
medium causes higher restriction to the fluid flow which,
in turn, slows its motion. Therefore, with increasing per-
meability parameter, the resistance to the fluid motion
also increases. To explain the effect of fluid particle inter-
action parameter (β) on velocity profile, the plot is shown
in Figure 7. It is interesting to note that, as (β) increases,
the fluid phase velocity decreases, and in contrast, dust

Figure 8 Effect of relaxation parameter (β) on θ (η) in PST case.

Figure 9 Effect of relaxation parameter (β) on θ (η) in PHF case.

phase velocity increases; whereas in temperature distribu-
tion in both PST and PHF cases, these decreases and are
shown in Figures 8 and 9.
The effect of Prandtl number on temperature of both

fluid and dust phase is displayed in Figures 10 and 11. In
both PST and PHF cases, one can observe that the temper-
ature decreases with increase in Pr. The physical reason
is that the lower values of Pr mean have lower viscosity
of the fluid, which increases the local velocity everywhere
within the boundary layer. Thus, the higher Prandtl num-
ber fluid has a relatively low thermal conductivity which
reduces the conduction. The variation of temperature dis-
tributions in both PST and PHF cases for various values of
space-dependent heat source/sink parameter A∗ are plot-
ted in Figures 12 and 13. From these plots, it is evident
that increasing in A∗ results in the enhancement of both
fluid and dust phase temperature. It is due to the fact that
A∗ > 0, the thermal boundary layer generates the energy

Figure 10 Effect of Prandtl parameter (Pr) on θ (η) in PST case.
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Figure 11 Effect of Prandtl parameter (Pr) on θ (η) in PHF case.

and obviously energy is absorbed for decreasing values of
A∗ resulting in temperature dropping significantly near
the boundary layer. Similar effect is observed form the
Figures 14 and 15 for the effect of temperature-dependent
heat source/sink parameter B∗.
Figures 16 and 17 depict the both fluid and dust phase

temperature profiles in PST and PHF cases, respectively,
for different values of magnetic parameter. From these
plots, it is observed that for increasing values of magnetic
parameter, the temperature profiles increases. This is due
to fact that the applied magnetic field opposes the fluid
motion; this is responsible for enhancing the temperature
profiles. Figures 18 and 19 show the effect of permeable
parameter on temperature distributions for both fluid and
dust phase, in PST and PHF cases, respectively. From
these plots, it is observed that the effect of increasing val-
ues of permeable parameter contributes to the thickening
of thermal boundary layer.

Figure 12 Effect of Space dependent source/sink parameter (A*)
on θ (η) in PST case.

Figure 13 Effect of Space dependent source/sink parameter (A*)
on θ (η) in PHF case.

For practical purpose, the skin-friction coefficient and
the heat transfer coefficient are determined for differ-
ent values of the curvature parameter (γ), fluid par-
ticle interaction parameter (β), Prandtl number (Pr),
flow-dependent A∗ and temperature-dependent B∗ heat
source/sink parameter, porous parameter (S), and mag-
netic parameter (Q). From Equation 22, we can see that
the magnitude of the skin friction coefficient Cf is directly
related to the dimensionless surface velocity gradient
f ′′(0). It is pointed out from Table 2 that the magnitude
of the skin friction coefficient increases with magnetic
parameter, permeability parameter, and curvature param-
eter while it is constant with Prandtl number and flow-
dependent and temperature-dependent heat source/sink
parameter. Increasing the values of space-dependent heat
source/sink parameter A∗ and temperature-dependent
heat source/sink parameter B∗ leads to fall in the value
of local Nusselt number where as skin friction coefficient

Figure 14 Effect of Temperature dependent source/sink
parameter (A*) on θ (η) in PST case.
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Figure 15 Effect of Temperature dependent source/sink
parameter (A*) on θ (η) in PHF case.

remains unchanged. It is observed that the skin friction
coefficient is higher for a cylinder, when compared to a flat
plate.

Conclusions
In this study, a two-dimensional MHD flow and heat
transfer of dusty fluid generated by stretching cylinder
immersed in a porous medium is investigated. The gov-
erning equations are reduced to a set of non-linear ordi-
nary differential equations by means of similarity trans-
formations. Due to non-linearity, a numerical approach
called Runge-Kutta-Felhberg 45 technique has been used
to compute the values of velocity function and tem-
perature field at different points of dynamic region.
Comparison of obtained numerical results is made with
previously published results for some special cases and
found to be in a good agreement. The study is mainly

Figure 16 Effect of Magnetic parameter (Q) on θ (η) in PST case.

Figure 17 Effect of Magnetic parameter (Q) on θ (η) in PHF case.

focused on the effect of curvature of stretching cylinder,
which is a very vital parameter affecting both flow and
temperature fields. The effects of applied magnetic field,
flow-dependent heat source/sink parameter, temperature-
dependent heat source/sink parameter, Prandtl number,
and fluid-particle interaction parameter are also taken
into account. As expected, an increase of the curvature
parameter leads to the increase in the velocity and temper-
ature profiles. Also, an increase in the value of magnetic
parameter leads to the decrease in the velocity boundary
layer thickness. However, quite the opposite is true with
the thermal boundary layer thickness in both PST and
PHF cases. Comparing the results in Figures 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17, we see that the
temperature of fluid phase is parallel to that of dust phase
and also, the temperature of the fluid is always more than
that of the dust phase. It is worth to mention that PHF
boundary conditions are best suitable for cooling and PST

Figure 18 Effect of Permeable parameter (S) on θ (η) in PST case.
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Figure 19 Effect of Permeable parameter (S) on θ (η) in PHF case.

for heating of the stretching cylinder. Finally, we conclude
that both the magnitude of the skin friction coefficient
and heat transfer rate at the surface are higher for cylinder
when compared to that of flat plate.

Notation
(w,u) and (wp,up) are the velocity components of the fluid
and dust particle phase. ν is the kinematic viscosity of

fluid, ρ is the density of the fluid, N is the number density
of the dust particles, K = 6πμd is the Stoke’s constant,
μ is the dynamic viscosity of the fluid, d is the radius of
dust particles, B0 is the magnetic field, kp is the perme-
ability of the porous medium, ρp is is the density of dust
phase, m is the mass of the dust particle, σ is the electric
conductivity of the fluid, a is the radius of the cylinder,
Uw(z) = bz

l is the stretching velocity, b > 0 is the stretch-
ing rate, l is the reference length, ω is the density ratio,
γ =

√
lν
a2 is the curvature parameter, A = σB20l

ρb is the

magnetic parameter, S = νl
bkp is the porous parameter,

τ = m
K is the relaxation time of the particle phase, β = l

τb
is the fluid-particle interaction parameter, Pr = N

ρ
is the

relative density and l∗ = mN
ρ

is the mass concentration
of dust particles, T and Tp are the temperatures of fluid
and dust particles, respectively, cp and cm are respectively
specific heat of fluid and dust particles, τT is the thermal
equilibrium time i.e., the time required by a dust cloud
to adjust its temperature to the fluid, τv is the relaxation
time of the dust particle, k∗ is the thermal conductiv-
ity, q′′′ is the space- and temperature-dependent internal
heat generation/absorption, A∗ and B∗ are the coefficients
of the space- and temperature-dependent internal heat
generation/absorption, Tw and T∞ are the temperature at

Table 2 The values of f ′′(0),−θ ′(0), and θ(0) for various values A∗, B∗, S, N, γ , Ec, and β

A∗ B∗ Pr Q β γ S −f"(0) −θ ′(0) θ(0)

0.2 0.2 3.0 1.0 0.1 0.5 0.5 1.82157 1.81112 0.764171

0.4 1.82157 1.74642 0.7829819

0.6 1.82157 1.68173 0.801791

0.2 0.2 3.0 1.0 0.1 0.5 0.5 1.82157 1.81112 0.764171

0.4 1.82157 1.75226 0.778672

0.6 1.82157 1.69122 0.794108

0.2 0.2 3.0 1.0 0.1 0.5 0.5 1.82157 1.81112 0.764171

5.0 1.82157 2.29439 0.720947

7.0 1.82157 2.65646 0.705487

0.2 0.2 3.0 1.0 0.1 0.5 0.5 1.82157 1.81112 0.764171

1.5 1.97352 1.81919 0.757088

2.0 2.11317 1.82094 0.752149

0.2 0.2 3.0 1.0 0.0 0.5 0.5 1.80043 0.8622 1.041606

0.05 1.81322 1.40414 0.880658

0.1 1.82157 1.81112 0.764171

0.2 0.2 3.0 1.0 0.1 0.0 0.5 1.60946 1.61563 0.823394

0.2 1.69472 1.66004 0.806224

0.4 1.77971 1.7598 0.777936

0.6 -1.863 1.86194 0.750953

0.2 0.2 3.0 1.0 0.1 0.5 0.0 1.65356 1.79255 0.774557

0.5 1.65356 1.79255 0.774557

1.0 1.97352 1.81919 0.757088

1.5 2.11317 1.82094 0.752149
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the wall and at large distance from the wall, respectively,
A and D are positive constants, Pr = μcp

k∗ is the Prandtl
number, Rex = Uwx

ν
is the local Reynold’s number, and

Ec = bl2
Acp (PST case) and Ec = k∗l2b

3
2

Acp (PHF case) is the
Eckert number.
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