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Delamination fracture analysis of an
elastic-plastic functionally graded
multilayered beam
V. Rizov

Abstract

Background: A theoretical study was performed of mode II delamination in a multilayered functionally graded beam
configuration with considering the material non-linearity.

Methods: The fracture was analysed by the J-integral approach. Two laws (quadratic and exponential) for variation of
the modulus of elasticity along the beam height were applied. The J-integral closed form non-linear analytical solutions
derived were verified by performing analyses of the strain energy release rate with taking into account the material
non-linearity. Parametric investigations of mode II non-linear fracture were conducted.

Results: It was found that material non-linearity leads to increase of the J-integral value. Therefore, the non-linear
behaviour of material has to be taken into account in fracture mechanics-based safety design of functionally graded
structural members.

Conclusions: The present paper contributes to the understanding of non-linear fracture in functionally graded
materials. The results obtained can be used for optimization of functionally graded beam structures with respect to the
fracture performance.
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Background
Functionally graded materials are new composites
developed in the last 30 years (Ashrafi and Shariyat
2014; Bohidar et al. 2014; Butcher et al. 1999; Gasik
2010; Hirai and Chen 1999; Ivanov and Stoyanov 2011;
Lu et al. 2009; Maganti and Nalluri 2015; Mohamma-
diha and Ghariblu 2016; Mortensen and Suresh 1995;
Nemat-Allal et al. 2011; Neubrand and Rödel 1997;
Suresh and Mortensen 1998). They are made by mixing
of two or more material constituents in different ratios
in different parts of a structural member in order to get
optimum performance to external loads. The most
important advantage of the functionally graded mate-
rials over the laminated composites (Szekrenyes 2010;
Szekrenyes and Vicente 2012) is that the composition
of the former changes gradually along one or more
spatial coordinates. In this way, boundary surfaces and

sharp interfaces between different constituent materials
are eliminated. Thus, failures from interfacial stress
concentrations are avoided. The engineering practice
shows that very often, fracture is the critical failure
mode in structural members composed by functionally
graded materials. Therefore, the study of fracture
behaviour is very important for further advancement of
functionally graded material technologies (Carpinteri
and Pugno 2006; Erdogan 1995; Paulino 2002; Pei and
Asaro 1997; Shi-Dong Pan et al. 2009; Tilbrook et al.
2005; Upadhyay and Simha 2007).
Fracture behaviour has been studied of a strip of a

functionally graded material subjected to edge loading
consisting of axial forces and bending moments by Pei
and Asaro 1997. The methods of linear-elastic fracture
mechanics have been applied. Analytical solutions have
been derived for stress intensity factors. The investiga-
tion performed has revealed that the material gradients
have significant influence on the fracture behaviour.Correspondence: V_RIZOV_FHE@UACG.BG
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Recent studies of the fracture in functionally graded
composites have been reviewed by Tilbrook et al. 2005.
Various solutions for stress intensity factors have been
presented. Cracks propagating parallel or perpendicular
to material gradient direction have been analysed assum-
ing linear-elastic behaviour. The strain energy release rate
has been investigated for periodic cracks in functionally
graded materials. Effects of material property variation on
fracture behaviour have been discussed.
Evaluation has been performed of the strength of

structures composed by linear-elastic functionally
graded materials incorporating re-entrant corners by
Carpinteri and Pugno 2006. An analytical method has
been developed for predicting the strength of struc-
tural members corresponding to the unstable brittle
crack propagation. The validity of the method has
been proved by considering plates under tension and
beams under bending.
The compliance approach has been applied for calcu-

lation of stress intensity factors in functionally graded
beams subjected to three-point bending assuming
linear-elastic material behaviour (Upadhyay and Simha
2007). An equivalent beam of variable height has been
suggested for engineering design analysis of the cracked
functionally graded beam. It has been demonstrated
that the equivalent compliance concept is particularly
suitable for cracked structural members loaded by con-
centrated forces.
Although many researchers have investigated the

fracture in functionally graded structural members,
there are still crack problems that have not been stud-
ied sufficiently (for instance, fracture behaviour of
functionally graded beams exhibiting material non-
linearity). Therefore, the purpose of present paper was
to perform a theoretical study of mode II delamination
fracture in a functionally graded multilayered beam
with considering the material non-linearity. It should
be mentioned that the present paper was motivated
also by the fact that functionally graded materials can
be built up layer by layer (Bohidar et al. 2014) which is
a premise for appearance of delamination cracks be-
tween layers. In real functionally graded structures,

delamination cracks can be loaded in different modes
due to the big variety of structural geometries and
external loadings and influences. Mode II crack
loading conditions are induced by in-plane shear. De-
lamination cracks in functionally graded layered mate-
rials are studied usually for mode I case, because the
mode I fracture toughness is the lowest. However, with
complex loading conditions seen in service, mode II
delamination may occur too. Beside, in tougher lay-
ered systems, the difference between mode I and mode
II fracture toughness decreases which also indicates
the need of analysing mode II delamination cracks. In
the present paper, the fracture was investigated by
applying the J-integral approach. The closed form ana-
lytical solutions derived were verified by performing
strain energy release rate analyses with taking into
account the material non-linearity. Effects were evalu-
ated of the material properties and crack location on
the fracture behaviour. The present paper contributes
towards the understanding of non-linear fracture in
functionally graded materials.

Methods
First, fracture behaviour of the three-layered function-
ally graded beam shown schematically in Fig. 1 was
analysed in the present paper. There are two symmetric
delamination cracks of length, a, between the layers. A
tensile force, F, is applied centrically at the free end of
internal crack arm. In this way, mode II crack loading
is induced (it should be noted that similar beam config-
uration has been used to study mode II delamination
fracture in laminated composites (Mladensky and Rizov
2013)). It is obvious that the two external crack arms
are free of stresses. The beam cross section is a rect-
angle of width, b, and height, h. The internal crack arm
thickness is 2h2. The beam is clamped in the right-hand
end. It was assumed that the material is functionally
graded along the beam height symmetrically with re-
spect to the centroid. In the analysis, only the upper
half of the beam, − h/2 ≤ z1 ≤ 0, was considered due to
the symmetry.

Fig. 1 The geometry of a beam with two symmetric delamination cracks
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The fracture behaviour was analysed by applying the
J-integral approach. For functionally graded materials,
the J-integral was formulated as (Anlas et al. 2000)

J ¼
Z
Γ

u0 cosα− px
∂u
∂x

þ py
∂v
∂x

� �� �
ds−

Z
A

∂u0
∂x

qdA;

ð1Þ

where Γ is a contour of integration going from the lower
crack face to the upper crack face in the counter clock-
wise direction, u0 is the strain energy density, α is the
angle between the outwards normal vector to the contour
of integration and the crack direction, px and py are the
components of the stress vector, u and v are the compo-
nents of the displacement vector with respect to the crack
tip coordinate system xy (x is directed along the crack), ds
is a differential element along the contour, A is the area
enclosed by that contour, and q is a weight function with a
value of unity at the crack tip, zero along the contour and
arbitrary elsewhere. It should be specified that the partial
derivative, ∂u0/∂x, exists only if the material property is an
explicit function of x (Anlas et al. 2000).
It should also be noted that the present fracture study

is based on the small strain assumption.
The integration was performed along the contour, Γ,

that consists of the beam cross sections ahead and be-
hind the crack tip (Fig. 1). It was mentioned above that
the upper crack arm is stress free. Therefore, the J-inte-
gral value in the upper crack arm is zero. The J-integral
solution was written as

J ¼ 2 JA1
þ JB1 þ JB2

� �
; ð2Þ

where JA1 , JB1 and JB2 are the J-integral values in

segments A1, B1 and B2, respectively. Segment A1 coin-
cides with the upper half of the cross section of internal
crack arm behind the crack tip. Segment B1 coincides
with the upper half of cross section of internal layer I
ahead of the crack tip, and segment B2 coincides with
the cross section of the external layer II ahead of the
crack tip. It should be noted that the expression in
brackets in (2) is doubled, because there are two sym-
metric cracks in the beam considered (Fig. 1).
It was assumed that the modulus of elasticity, Ec, of

the internal layer I varies continuously in the thickness
direction according to the following quadratic law:

Ec z1ð Þ ¼ Ec0 þ Ec1−Ec0

h22
z21 at −h2≤z1≤h2; ð3Þ

where Ec0 and Ec1 are the values of Ec in the beam
cross-sectional centre and in the internal layer edge,
respectively.

The modulus of elasticity, Ef, of the external layer II
varies through the thickness as

Ef z1ð Þ¼ Ef 0 þ Ef 1−Ef 0

h21
h2 þ z1ð Þ2 at−h1−h2≤z1≤−h2;

ð4Þ

where Ef0 and Ef1 are the values of the modulus of
elasticity in the lower and in the upper edge of layer II,
respectively. Here, h1 is the thickness of layer II (Fig. 1).
First, a linear-elastic fracture analysis was per-

formed. The J-integral components in segment A1

were written as

px ¼ −σ; py ¼ 0; ds ¼ dz1; cosα ¼ −1; ð5Þ

where the z1-coordinate varies in the interval [−h2, 0].
According to Hooke’s law, the stress, σ, was expressed as

σ ¼ Ec z1ð Þεc: ð6Þ
The following equation for equilibrium was used to

derive the longitudinal strain, εc, in the internal crack
arm behind the crack tip:

F
2
¼

Z0

−h2

σbdz1: ð7Þ

From (4), (6) and (7), we obtained

εc ¼ 3F
2bh2 2Ec0 þ Ec1ð Þ : ð8Þ

The strain energy density was expressed as

u0 ¼ 1
2
Ec z1ð Þε2c : ð9Þ

The following equation from mechanics of materials
was applied to determine the partial derivative, ∂u/∂x,
in (1):

∂u
∂x

¼ εc:

ð10Þ
The partial derivative, ∂u0/∂x, in the second integral in

(1) was written as

∂u0
∂x

¼ 0; ð11Þ

since the strain energy density does not depend explicitly
on x (the modulus of elasticity is not a function of x,
because the material is functionally graded along to the
beam height only (refer to (3)).
By combining (1), (3), (5), (6), (9), (10) and (11), we

derived
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JA1 ¼
1
6
ε2ch2 2Ec0 þ Ec1ð Þ: ð12Þ

The integration in segment B1 of the integration
contour (Fig. 1) was performed in the following way.
The J-integral components were written as

px ¼ σ; py ¼ 0; ds ¼ −dz1; cosα ¼ 1; ð13Þ

where z1 varies in the interval [0, − h2]. The stress, σ,
was expressed by using Hooke’s law as

σ ¼ Ec z1ð Þεd: ð14Þ

The longitudinal strain, εd, in the un-cracked beam
portion, x ≥ 0, was found from the following equilibrium
equation:

F
2
¼

Z
−h1−h2

−h2

σ f bdz1 þ
Z0

−h2

σcbdz1; ð15Þ

where σf and σc are the stresses in the layers II and I, re-
spectively. These stresses were expressed by Hooke’s law:

σ f ¼ Ef z1ð Þεd; ð16Þ

σc ¼ Ec z1ð Þεd: ð17Þ

By combining (3), (4), (15), (16) and (17), we found

εd ¼ 3F

2bh1 2Ef 0 þ Ef 1
� 	þ 2bh2 2Ec0 þ Ec1ð Þ : ð18Þ

The other J-integral components were obtained as

u0 ¼ 1
2
Ec z1ð Þε2d;

∂u
∂x

¼ εd: ð19Þ

From (1), (3), (4), (13), (14), (18) and (19), we obtained

JB1 ¼ −
1
6
ε2dh2 2Ec0 þ Ec1ð Þ: ð20Þ

The J-integral components in segment B2 of the integra-
tion contour (Fig. 1) were determined by (13), where z1
varies in the interval [−h2, − h1 − h2] and the stress, σ, was
obtained by (17). The other components were determined
by (19), where Ec(z1) was replaced with Ef(z1). By combin-
ing (1), (13), (17) and (19), we derived

JB2
¼ −

ε2d
6h21

3h31Ef 0 þ Ef 1−Ef 0
� 	

h32 þ Ef 1−Ef 0
� 	

h1−h2ð Þ3
 �
:

ð21Þ

Finally, (12), (20) and (21) were substituted in (2):

J ¼ 1
3
ε2ch2 2Ec0 þ Ec1ð Þ− 1

3
ε2dh2 2Ec0 þ Ec1ð Þ

−
ε2d
3h21

3h31Ef 0 þ Ef 1−Ef 0
� 	

h32 þ Ef 1−Ef 0
� 	

h1−h2ð Þ3
 �
;

ð22Þ

where εc and εd were determined by (8) and (18),
respectively.
Fracture analyses of the three-layered functionally

graded beam (Fig. 1) were performed also assuming non-
linear material behaviour. The mechanical behaviour of
layer I was described by the following non-linear stress-
strain relation (Petrov 2014):

σ ¼ Eεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

t

� 	2q ; ð23Þ

where E is obtained by (3), σ is the stress, ε is the strain,
and t is a material property (usually, t is equal to unit
(Petrov 2014)). The non-linear stress-strain curve is
shown schematically in Fig. 2. It should be specified that
the stress-strain relation (23) describes elastic-plastic be-
haviour with hardening that is typical for some function-
ally graded materials (for instance, zircona-titanium
functionally graded material (Tsukamoto 2014)).
Equation (23) was applied also to describe the mech-

anical behaviour of layer II (the only difference is that E
is determined by (4)).
It should be noted that the present non-linear fracture

analysis holds for non-linear elastic material behaviour.
However, the analysis is applicable also for elastic-plastic
behaviour, if the external load magnitude increases only,

Fig. 2 Non-linear stress-strain diagram
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i.e. if the functionally graded beam considered undergoes
active deformation (Chakrabarty 2006).
The non-linear fracture was analysed by applying the

J-integral approach (1). The integration was performed
along the same integration contour, Γ, used in the linear-
elastic solution (Fig. 1).
The J-integral components in segment A1 of the inte-

gration contour (Fig. 1) were obtained by (5), where σ
was calculated by (23). The strain, εc, in the internal
crack arm behind the crack tip was determined by
Eq. (7). By combining (3), (7) and (23), we derived

εc ¼ tωffiffiffiffiffiffiffiffiffiffiffiffi
t2−ω2

p ;ω ¼ 3F
2bh2 2Ec0 þ Ec1ð Þ:

ð24Þ

The strain energy density is equal to the area, OPQ,
enclosed by the stress-strain curve (refer to Fig. 3):

u0 ¼
Zε

0

σdε: ð25Þ

From (23) and (25), we obtained

u0 ¼ Et2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

t

� �2
r

−1

" #
: ð26Þ

Equation (10) was used to find the partial derivative,
∂u/∂x, where εc was calculated by (24).
By combining (1), (3), (10), (11), (23), (24) and (26), we

derived

JA1 ¼ t2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� 	2q
2
64

3
75 h2

3
2Ec0þEc1
� 	

: ð27Þ

Equation (13) was applied in order to find the J-integral
components in segment B1 of the integration contour
(σ was obtained substitution of (3) in (23)).
The strain energy density was found by (26). For this

purpose, ε was replaced with εd.
The strain, εd, in the un-cracked beam portion was

found by (15). For this purpose, σc and σf were obtained
by substitution of (3) and (4) in (23). In this way, from
(15), we derived

εd ¼ tφffiffiffiffiffiffiffiffiffiffiffiffi
t2−φ2

p ;φ ¼ 3F

2bh1 2Ef 0 þ Ef 1
� 	þ 2bh2 2Ec0 þ Ec1ð Þ :

ð28Þ
By combining (1), (13), (12), (16), (23), (26) and (28),

we derived

JB1 ¼ t2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
t

� 	2q −1

2
64

3
75 h2

3
2Ec0 þ Ec1ð Þ: ð29Þ

The J-integral components in segment B2 of the inte-
gration contour (Fig. 1) were obtained by (13), where the
stress, σ, was calculated by substitution of (4) in (23).
Equation (26) was used to determine the strain energy
density. For this purpose, ε was replaced with εd.
From (1), (4), (10), (11), (13), (23) and (26), we

obtained

JB2 ¼ t2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
t

� 	2q −1

2
64

3
75 h1

3
2Ef 0 þ Ef 1
� 	

: ð30Þ

Equations (27), (29) and (30) were substituted in (2):

J ¼ 2t2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� 	2q
2
64

3
75 h2

3
2Ec0þEc1
� 	

þ 2
3
t2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εd

t

� 	2q −1

2
64

3
75 h2 2Ec0 þ Ec1ð Þ þ h1 2Ef 0 þ Ef 1

� 	
 �
;

ð31Þ
where εc and εd were calculated by (24) and (28),
respectively.
In order to verify the J-integral non-linear solution (31),

an analysis was developed of the strain energy release rate,
G, with taking into account the material non-linearity.
The strain energy release rate, associated with an elemen-
tary increase of the crack area, dAa, was written as

Fig. 3 Strain energy density, u0, and complimentary strain energy
density, u�0
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G ¼ dW ext−dU
dAa

: ð32Þ

The change of the external work, dWext, was
expressed as

dW ext ¼ dU� þ dU ; ð33Þ
where dU* and dU are the changes of complimentary
strain energy and the strain energy, respectively. By
combining (32) and (33), we obtained

G ¼ dU�

dAa
; ð34Þ

where

dAa ¼ bda: ð35Þ
Here, da is an elementary crack length increase.
The complimentary strain energy, U*, was obtained by

integration of the complimentary strain energy density,
u�0, in the beam volume:

U� ¼
Z0

−h2

u�0badz1 þ
Z0

−h2

u�0b l−að Þdz1 þ
Z−h2

−h1−h2

u�0b l−að Þdz1:

ð36Þ
The complimentary strain energy density is equal to

the area OQR that supplements the area OPQ to a
rectangle (Fig. 3). Therefore, the complimentary strain
energy density was written as

u�0 ¼ σε−u0: ð37Þ
By combining (23), (26) and (37), we obtained

u�0 ¼ Et2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε
t

� 	2q
2
64

3
75: ð38Þ

After substitution of (3), (4), (24), (28) and (38) in (36),
we derived

U� ¼ abt2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� �2
r

2
664

3
775 h2

3
2Ec0 þ Ec1ð Þ

þ 1
3
b l−að Þt2 1−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εd

t

� �2
r

2
664

3
775 h2 2Ec0 þ Ec1ð Þ þ h1 2Ef 0 þ Ef 1

� 	
 �

ð39Þ
The expression obtained by combining (34), (35) and

(39) was doubled, since there are two symmetric cracks
(Fig. 1):

G ¼ 2t2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� 	2q
2
64

3
75 h2

3
2Ec0þEc1
� 	

þ 2
3
t2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εd

t

� 	2q −1

2
64

3
75 h2 2Ec0 þ Ec1ð Þ þ h1 2Ef 0 þ Ef 1

� 	
 �
:

ð40Þ

The fact that (40) is exact match of (31) verifies the
J-integral non-linear solution (31).
Finally, a non-linear fracture analysis of the three-

layered functionally graded beam (Fig. 1) was performed
assuming that the modulus of elasticity, Ec(z1), in the
internal layer I varies according to the following expo-
nential law:

Ec z1ð Þ ¼ Ec0e
−λz1 ; λ≥0 at −h2≤z1≤0; ð41Þ

where Ec0 is the modulus in the beam cross-sectional
centre.
The modulus of elasticity, Ef (z1), of the external layer

II was written as

Ef z1ð Þ ¼ Ef 0e
−λ h2þz1ð Þ; at−h1−h2≤z1≤−h2; ð42Þ

where Ef0 is the modulus in the lower edge of layer II.
The stress-strain relation (23) was used to describe the

non-linear material behaviour in layer I (for this purpose,
E was replaced with (41)). Equation (23) was applied also
in layer II (the modulus, E, was replaced with (42)).
Equation (5) was applied to obtain the J-integral

components in segment A1 (Fig. 1). For this purpose, σ
was found by substitution of (41) in (23).
The longitudinal strain, εc, in the internal crack arm

behind the crack tip was obtained from Eq. (7). By
combining (7), (23) and (41), we derived

εc ¼ tθffiffiffiffiffiffiffiffiffiffiffi
t2−θ2

p ; θ ¼ Fλ
2bEc0 eλh2−1ð Þ : ð43Þ

After substitution of (5), (10), (11), (23), (26), (41) and
(43) in (1), we obtained

JA1 ¼ t2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� 	2q
2
64

3
75Ec0

λ
eλh2−1
� 	

:

ð44Þ
Equation (13) was used to determine the J-integral

components in segment B1 (σ was obtained by substitu-
tion of (41) in (23)).
The longitudinal strain, εd, in the un-cracked beam

portion was found by substitution of (23), (41) and (42)
in (15):
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εd ¼ tζffiffiffiffiffiffiffiffiffiffiffi
t2−ζ2

p ; ζ ¼ Fλ

2b Ec0 eλh2−1ð Þ þ Ef 0 eλh1−1
� 	
 �

ð45Þ

By combining (1), (11), (13), (23), (26), (41) and (45),
we derived

JB1 ¼ t2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
t

� 	2q −1

2
64

3
75Ec0

λ
eλh2−1
� 	

:

ð46Þ

In segment B2, the J-integral components were found
by (13) (the stress, σ, was determined by substitution of
(42) in (23)). The strain energy density was calculated by
substitution of (42) in (26).
By combining of (1), (11), (23), (26), (42) and (45), we

derived

JB2 ¼ t2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
t

� 	2q −1

2
64

3
75Ef 0

λ
eλh1−1
� 	

: ð47Þ

Equations (44), (46) and (47) were substituted in (2):

J ¼ 2t2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� 	2q
2
64

3
75Ec0

λ
eλh2−1
� 	þ

þ2t2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
t

� 	2q −1

2
64

3
75 Ec0

λ
eλh2−1
� 	þ Ef 0

λ
eλh1−1
� 	�

;

�

ð48Þ

where εc and εd were calculated by (43) and (45),
respectively.
A non-linear strain energy release rate analysis was

conducted in order to verify (48). After substitution of
(38), (41), (42), (43) and (45) in (36), the beam
complimentary strain energy was written as

U� ¼ abt2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� 	2q
2
64

3
75Ec0

λ
eλh2−1
� 	

þ b l−að Þt2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
t

� 	2q
2
64

3
75 Ec0

λ
eλh2−1
� 	þ Ef 0

λ
eλh1−1
� 	�

:

�

ð49Þ

After combining (34), (35) and (49), the expression
obtained was doubled:

G ¼ 2t2 1−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εc
t

� 	2q
2
64

3
75Ec0

λ
eλh2−1
� 	

þ 2t2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
t

� 	2q −1

2
64

3
75 Ec0

λ
eλh2−1
� 	þ Ef 0

λ
eλh1−1
� 	�

;

�

ð50Þ

which is exact match of (48). This fact is a verification of
non-linear solution (48).
Further, it was assumed that the beam configuration

in Fig. 1 is made of an arbitrary number of function-
ally graded layers composed symmetrically with re-
spect to the centroid. Therefore, only the upper half
of beam, − h/2 ≤ z1 ≤ 0, was analysed. Perfect adhesion
was assumed between layers. Each layer has individual
thickness and material properties. The material behav-
iour in each layer was described by the non-linear
stress-strain law (23). In each layer, the material is
functionally graded along the layer thickness. It was
assumed that the modulus of elasticity, Ei, in each
layer varies continuously along the layer thickness
according to the following quadratic law:

Ei z1ð Þ ¼ Eai þ Ebi−Eai

z1iþ1−z1ið Þ2 z1−z1ið Þ2at z1i≤z1≤z1iþ1;

ð51Þ

where Eai and Ebi are, respectively, the moduli of elasti-
city in the upper and lower edge of the ith layer and z1i
and z1i + 1 are, respectively, the coordinates of the upper
and lower edge of the same layer.
The non-linear fracture behaviour was studied in

terms of the strain energy release rate by using formula
(34). In order to determine the complimentary strain
energy, formula (36) was re-written as

U� ¼
Xi¼nc

i¼1

Z
z1i

z1iþ1

u0i
� badz1 þ

Xn
i¼1

Z
z1i

z1iþ1

u0i
� b l−að Þdz1;

ð52Þ

where nc and n are the layer number in the internal
crack arm and in the un-cracked beam portion, respect-
ively. The strain energy density in the ith layer, u�0i , was
written as

u�0i ¼ σ iε−u0i; ð53Þ

where σi and u0i are the stress and the strain energy
density, respectively. The stress in each layer was calcu-
lated by applying the non-linear stress-strain relation
(23). In order to determine the strain, εc, in the internal
crack arm in the equilibrium, Eq. (7) was re-written as
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F
2
¼

Xi¼nc

i¼1

Z
z1i

z1iþ1

σ ibdz1: ð54Þ

By combining (23), (51) and (54), we derived

εc ¼ tψffiffiffiffiffiffiffiffiffiffiffiffi
t2−ψ2

p ; ð55Þ

where

ψ ¼ 3F

2b
Xi¼nc

i¼1

z1iþ1−z1ið Þ 2Eai þ Ebið Þ
: ð56Þ

The strain, εd, in the un-cracked beam portion, x ≥ 0,
was found from the following equilibrium equation:

F
2
¼

Xn
i¼1

Z
z1i

z1iþ1

σ ibdz1: ð57Þ

After substituting (23) and (51) in (56), we obtained

Fig. 4 The J-integral value in non-dimensional form plotted against 2h2/h ratio at different Ec1/Ec0 ratio. The modulus of elasticity varies along the
beam height according to quadratic laws (3) and (4)

Fig. 5 The J-integral value in non-dimensional form plotted against Ef0/Ec0 ratio (curve 1 linear-elastic material behaviour, curve 2 elastic-plastic ma-
terial behaviour). The modulus of elasticity varies along the beam height according to quadratic laws (3) and (4)
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εd ¼ tηffiffiffiffiffiffiffiffiffiffiffi
t2−η2

p ; ð58Þ

where

η ¼ 3F

2b
Xi¼n

i¼1

z1iþ1−z1ið Þ 2Eai þ Ebið Þ
: ð59Þ

Finally, by doubling the result derived by substituting
(23), (35), (51), (52), (53), (55) and (58) in (34), we found
the following formula for the strain energy release rate:

G ¼ 2
3
t2 1−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εc

t

� 	2q
2
64

3
75Xi¼nc

i¼1

z1iþ1−z1ið Þ 2Eai þ Ebið Þ

þ 2
3
t2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εd

t

� 	2q −1

2
64

3
75Xi¼n

i¼1

z1iþ1−z1ið Þ 2Eai þ Ebið Þ;

ð60Þ
where εc and εd are determined by (55) and (58),
respectively.

Results
The effects were evaluated of crack location along the
beam height and material properties on the non-linear
mode II delamination fracture behaviour of the function-
ally graded three-layered beam configuration considered.
The crack location along the beam height was character-
ized by 2h2/h ratio (Fig. 1). First, the J-integral non-linear
solution (31) derived for quadratic law of variation of

modulus of elasticity along the beam height was analysed.
For this purpose, the J-integral value was calculated at
various 2h2/h ratios for Ec1/Ec0 = 0.5, 1 and 2. In these
calculations, it was assumed that h = 0.004 m, b = 0.02 m,
F = 30 N, t = 1, Ef0/Ec0 = 1.2 and Ef1/Ef0 = 0.8. The J-inte-
gral values generated were presented in non-dimensional
form by using the formula JN = J/(Ec0b) and plotted against
2h2/h ratio as shown in Fig. 4. The diagrams in Fig. 4 indi-
cate that the J-integral value decreases with increasing
2h2/h ratio. This finding was attributed to increase the

Fig. 6 The J-integral value in non-dimensional form plotted against the power law exponent, λ, at different 2h2/h ratios. The modulus of elasticity
varies along the beam height according to exponential laws (41) and (42)

Fig. 7 The cross section of a six-layer beam configuration
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internal crack arm stiffness. One can observe also (Fig. 4)
that the increase of Ec1/Ec0 ratio leads to decrease of
the J-integral value (this is due to increase of the
beam stiffness).
The influence of Ef0/Ec0 ratio on the fracture behaviour

was analysed too. For this purpose, the J-integral value
was plotted in non-dimensional form against Ef0/Ec0 ratio
for Ec1/Ec0 = 2, Ef1/Ef0 = 0.8 and 2h2/h = 3/4 as illustrated
in Fig. 5. It can be observed that the J-integral value
decreases with increasing Ef0/Ec0 ratio, which can be ex-
plained with increase of the beam stiffness. The J-integral
values obtained by the linear-elastic solution (22) at vari-
ous Ef0/Ec0 ratios for Ec1/Ec0 = 2, Ef1/Ef0 = 0.8 and 2h2/h =
3/4 were presented also in Fig. 5 in non-dimensional form

in order to evaluate the influence of material non-linearity
on the mode II fracture behaviour. One can observe in
Fig. 5 that the material non-linearity leads to increase of
the J-integral value. Therefore, the non-linear behaviour of
material has to be taken into account in fracture
mechanics-based safety design of structural members
composed by functionally graded materials.
The effects of crack location and material properties

on the non-linear mode II fracture behaviour were in-
vestigated also when the modulus of elasticity varies
along the beam height according to the exponential laws
(41) and (42). The J-integral value was calculated by
non-linear solution (48) at various λ for 2h2/h = 0.25,
0.50 and 0.75, and Ef0/Ec0 = 1.1. The results are

Fig. 8 The strain energy release rate in non-dimensional form plotted against Ea3/Eb3 ratio for three values of Ea2/Eb3 ratio for the six-layer
beam configuration

Fig. 9 The strain energy release rate in non-dimensional form presented as a function of Ea1/Ea2 ratio for three values of Eb1/Eb2 ratio for the
six-layer beam configuration
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presented in non-dimensional form in Fig. 6. The data
in Fig. 6 indicate that the J-integral value decreases with
increasing λ. This fact is explained with increase of the
exponent in (41) and (42), since z1 < 0. It can be ob-
served also that increase of 2h2/h ratio leads to decrease
of the J-integral value (Fig. 6).
The effects of material gradient on the mode II non-

linear delamination fracture behaviour of multilayered
beam were also analysed. A beam configuration made of
six layers composed symmetrically with respect to the
centroid was considered (the beam cross section is
shown schematically in Fig. 7). The thickness of layers 1
and 2 is equal to h1/2. The thickness of layer 3 is h2. The
influence of material gradient along the thickness of
layer 3 was investigated. For this purpose, the strain en-
ergy release rate was calculated by applying formula
(60). The material gradient was characterized by Ea3/Eb3
ratio. The results obtained were presented in non-
dimensional form by using formula, GN =G/(Eb3b). The
strain energy release rate in non-dimensional form was
plotted against Ea3/Eb3 ratio for three values of Ea2/Eb3
ratio in Fig. 8. One can observe in Fig. 8 that the strain
energy release rate decreases with increasing of Ea3/Eb3
and Ea2/Eb3 ratios. This was explained with the increase
of beam stiffness. Further, the influence of Ea1/Ea2 and
Eb1/Eb2 ratios on the delamination fracture was also
evaluated. For this purpose, the strain energy release rate
in non-dimensional form was presented as a function of
Ea1/Ea2 ratio for three values of Eb1/Eb2 ratio in Fig. 9.
The curves in Fig. 9 indicate that the increase of Ea1/Ea2
and Eb1/Eb2 ratios leads to decrease of the strain energy
release rate.

Conclusions
First, the mode II delamination fracture behaviour of a
functionally graded three-layered beam exhibiting mater-
ial non-linearity was studied theoretically. There were
two delamination cracks located symmetrically with re-
spect to the beam centroid. The internal crack arm was
loaded centrically by one tensile force. The material was
functionally graded along the beam height. Two laws
(quadratic and exponential) for variation of the modulus
of elasticity were considered in the fracture analysis. The
beam mechanical behaviour was described by using a
non-linear stress-strain relation. The fracture was ana-
lysed by applying the J-integral approach. Closed form
analytical solutions of the J-integral were derived for the
two laws of variation of modulus of elasticity. Analyses
of the strain energy release rate were developed with
taking into account the material non-linearity in order
to verify the J-integral non-linear solutions derived. The
non-linear mode II delamination fracture was also ana-
lysed assuming that the beam under consideration is
multilayered (in each layer, the material is functionally

graded in the thickness direction). The effects of mater-
ial gradient, crack location along the beam height and
material non-linearity on the mode II delamination
fracture behaviour of functionally graded three-layered
beam configuration were evaluated. The results ob-
tained can be applied for optimization of the beam
structure in its design with respect to the non-linear
fracture performance. Comparisons were carried out
between linear-elastic and elastic-plastic fracture behav-
iour. It was found that the material non-linearity leads
to increase of the J-integral value. Therefore, the mater-
ial non-linearity has to be considered in fracture
mechanics-based safety design of structural members
composed by functionally graded materials. The present
study indicates that the analytical approach can be applied
to obtain very useful information for mode II non-linear
fracture behaviour, since the simple formulae derived
capture the essential of material non-linearity.
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