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Abstract

Background: The primary function of a suspension system is to isolate the vehicle body from road irregularities
thus providing the ride comfort and to support the vehicle and provide stability. The suspension system has to
perform conflicting requirements; hence, a passive suspension system is replaced by the active suspension system
which can supply force to the system. Active suspension supplies energy to respond dynamically and achieve
relative motion between body and wheel and thus improves the performance of suspension system.

Methods: This study presents modelling and control optimization of a nonlinear quarter car suspension system. A
mathematical model of nonlinear quarter car is developed and simulated for control and optimization in Matlab/
Simulink® environment. Class C road is selected as input road condition with the vehicle traveling at 80 kmph.
Active control of the suspension system is achieved using FLC and PID control actions. Instead of guessing and or
trial and error method, genetic algorithm (GA)-based optimization algorithm is implemented to tune PID
parameters and FLC membership functions’ range and scaling factors. The optimization function is modeled as a
multi-objective problem comprising of frequency weighted RMS seat acceleration, Vibration dose value (VDV), RMS
suspension space, and RMS tyre deflection. ISO 2631-1 standard is adopted to assess the ride and health criterion.

Results: The nonlinear quarter model along with the controller is modeled and simulated and optimized in a
Matlab/Simulink environment. It is observed that GA-optimized FLC gives better control as compared to PID and
passive suspension system. Further simulations are validated on suspension system with seat and human model.
Parameters under observation are frequency-weighted RMS head acceleration, VDV at the head, crest factor, and
amplitude ratios at the head and upper torso (AR_h and AR_ut). Simulation results are presented in time and
frequency domain.

Conclusion: Simulation results show that GA-based FLC and PID controller gives better ride comfort and health
criterion by reducing RMS head acceleration, VDV at the head, CF, and AR_h and AR_ut over passive suspension system.
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Background
The main function of an automotive suspension system
is to support the vehicle weight, to isolate the occupants
against the excitations caused by road unevenness and
thus providing the ride comfort and better handling, and
to keep the contact between tyre and ground. The task
of the suspension system is a trade-off between ride and
performance as ride comfort needs soft suspension sys-
tem whereas to follow track and support vehicle weight
stiff suspension system is required.
The primary objective of the active suspension system is

to replace the passive suspension system by a controlled
system which can supply force to the system. Active sus-
pension supplies energy to respond dynamically and
achieve relative motion between the body and the wheel.
Thus, to changing road conditions, active suspension sys-
tem improves the performance of the suspension system
such as ride comfort, suspension or rattle space
displacement, tyre displacement, and body displacements
(Wong 2001). For active control, various control strategies
are implemented like optimal control, robust control, non-
linear control, nonlinear control with backstepping, sliding
mode control, intelligent control, neural control, and hy-
brid control. One of the main objectives was to minimize
body acceleration to improve ride comfort.
Metered et al. (2015) had implemented particle swarm

optimization (PSO) algorithm to tune the PID controller
implemented on a semi-active quarter car suspension sys-
tem. A 2DoF model with MR damper is simulated in a
Matlab/Simulink environment with bump and random
road inputs. The system was tested in time and frequency
domain. It was observed that POS tuned PID controller
improves ride comfort and vehicle stability. Kesarkar and
Selvaganesan (2015) designed fractional order PID con-
troller using artificial bee colony algorithm with objective
functions such as integral absolute error, integral square
error, and integral time absolute error implemented to a
multi-modal complex optimization problem. The authors
observed that the results were promising as compared to
the conventional PID method. Niu (2014) had imple-
mented GA-based optimization method to tune PID pa-
rameters of the active suspension system. Absolute error
control is used as an objective function to tune the PID
parameters. It was observed that the GA-based optimized
PID controller improves the dynamic performance of the
active suspension system and improves stability. Gad et al.
(2017) implemented a fractional order PID controller to a
semi-active seat suspension. PID parameters are tuned
using multi-objective GA for a seat suspension system
using the 6-DoF human body. It is observed that
GA-based PID controller improved SEAT value, VDV ra-
tio, and crest factor as compared to the passive system
and classical PID controller. Results are obtained in time
as well as frequency domain. Tammam et al. (2013)

implemented a multi-objective GA-based PID controller
to control the load frequency of a single area power sys-
tem. It is observed that GA-based PID controller is simple
and easy to implement and improves system performance
effectively. Abdelrassoul et al. (2016) studied the perform-
ance of the PV system based on GA-optimized PID con-
troller. Here, PID controller is implemented to enhance
PV system output with minimum overshoot and mini-
mum rise time in output voltage with the better response.
Chen and Chang (2006) studied GA-based PID tuning for
active magnetic bearing. The proposed PID controller
shows that the active magnetic bearing had good static
and dynamic performance and showed better performance
and effectiveness.
It is observed that optimization of PID controller

applied to suspension system is carried out in single
objective nature (Metered et al. 2015; Niu 2014) whereas
(Kesarkar and Selvaganesan 2015) presented a
multi-modal optimization approach and (Gad et al.
2017) presented dual objective function optimization.
Kalaivani et al. (2014) studied a fuzzy logic-based ac-

tive quarter car suspension system. A hybrid differential
evolution bio-geography based optimization algorithm is
used to tune the FLC controller. RMS body acceleration
is used as performance index to study the PID and newly
proposed FLC controller. It was observed that the pro-
posed controller improves the ride comfort. Taskin et al.
(2017) implemented the FLC controller on a quarter car
test rig. Time and frequency domain response of sprung
mass displacement, acceleration, and suspension space
deflection and actuator force are studied and compared
with passive suspension system and observed that FLC
controller performance better. Huang and Chao (2000)
implemented a fuzzy logic controller-based active sus-
pension system on a quarter car model. Results showed
that the control strategy improves ride comfort reducing
the oscillations of the body. Salem and Aly (2009) had
studied the 2-DoF quarter suspension system. FLC is
used to control the quarter car active suspension system.
Body acceleration is used as a criterion to study the ride
comfort of a suspension system, along with handling.
FLC and PID controller are studied and observed that
FLC performs better compared to the PID controller.
Rajendiran and Lakshmi (2016) analyzed active control
of 2-DoF suspension system using PID control and FLC
along with seat and driver model. It was observed that
FLC improves ride comfort than that of PID control and
passive system. Taskin et al. (2007) studied the FLC con-
troller to enhance ride comfort. From time response of
the active system, it is observed that body displacement
is minimized without losing suspension working space.
Results were obtained in the frequency domain which
shows improved ride comfort. From above discussions, it
is observed that researchers (Taskin et al. 2017; Huang
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and Chao 2000; Salem and Aly 2009; Rajendiran and Lak-
shmi 2016) have successfully implemented the FLC for
ride control applications, whereas (Kalaivani et al. 2014)
optimized FLC using a single optimization function.
Talib and Darus (2014) implemented a semi-active

suspension system using FLC and PID controllers. Per-
formance of both the controllers is optimized by the
PSO algorithm for mean square error. Optimized FLC,
PID controllers are compared with a passive suspension
system for body displacement, acceleration, tyre dis-
placement for bump, and hole disturbances. It is ob-
served that the FLC controller gave better results as
compared to the PID controller. Celin and Rajeswari
(2012) implemented type-2 FLC to the active suspension
system. Sprung mass displacement, RMS acceleration,
suspension space, and tyre deflection criterions were
used to study the FLC and passive suspension system.
GA-coded FLC outperforms the FLC and passive sus-
pension system. D’Amato and Viassolo (2000) presented
the active suspension system to reduce the body acceler-
ation to improve comfort. FLC is used to control where
parameters are tuned by GA optimization. This method-
ology improves ride comfort thus was effective in case of a
quarter car suspension system. Li and Du (2006) pre-
sented a GA-based approach to optimize rule base and
scaling factors. The parameters were coded into
real-coded strings and treated as chromosomes during
optimization. The GA-based optimization approach im-
proves the performance of FLC. Liu et al. (2016) had suc-
cessfully optimized the membership functions of FLC to a
maximum power point tracking (MPPT) algorithm using
PSO algorithm to improve averaged tracking error and fit-
ness value. Bouarroudj et al. (2017) had presented the
comparative analysis of Mamdani FLC with Gaussian
membership functions for MPPT of PV system using GA
and PSO approach. It was observed that PSO and GA op-
timized FLC gives better results in terms of performance.
This paper presents the mathematical modelling of a

nonlinear quarter car (NLQC) along with a human model.
The nonlinear quarter car model consists of quadratic tyre
stiffness and cubic stiffness in suspension spring as non-
linearities. PID and FLC are implemented with the control
objective to minimize frequency weighted RMS sprung
mass acceleration (hereafter called as RMS sprung mass
acceleration), VDV, RMS suspension space requirement,
and RMS tyre deflection along with RMS optimal control
force. The constraints on optimization are maximum con-
trol force, maximum sprung mass acceleration, maximum
suspension space requirement, and maximum tyre deflec-
tion. Due to multi-objective natures of optimal control
and conflicting control objectives, the key issue is to select
the PID gain values and range of fuzzy input and output
membership functions and scaling factors to fulfill the
conflicting requirements. Trial and error method and or

manual tuning of the PID controller and FLC are cumber-
some and time-consuming. Hence, a GA-based evolution-
ary optimization technique is used to search the optimum
parameters. During optimization, a nonlinear optimal
control system is simulated in a Matlab/Simulink® envir-
onment where the tuning parameters are selected from
the search space. The output of the nonlinear optimal
control system is fed to the optimization algorithm to de-
termine the objectives and validate the constraints. The
optimization procedure is repeated up to 100 generations.
Further, the optimization results are validated on a quarter
car with seat and human model. Results are presented in
both time domain and frequency domain.

Methods
Mathematical modelling—nonlinear quarter car
suspension-seat-human model
A suspension system consists of damper and coil
springs. Researchers have used various mathematical
models viz. quarter car model having 2-DoF, a half car
model having 4-DoF, and full car model. In this study, a
2-DoF quarter-car model is implemented for ride and
control applications (Metered et al. 2015; Kalaivani et al.
2014; Taskin et al. 2017; Huang and Chao (2000); Salem
and Aly 2009; Rajendiran and Lakshmi 2016).
Mathematical modeling is carried out using linear

springs and damper by various authors (Kalaivani et al.
2014; Taskin et al. 2017; Huang and Chao (2000); Salem
and Aly 2009; Rajendiran and Lakshmi 2016). But it is
observed that spring exhibits nonlinear nature so do the
tyre (Fuller et al. 1996). Thus, the nonlinearity should be
considered during modeling. McGee et al. (2005) studied
nonlinearities in the suspension system using a fre-
quency domain technique and are validated experimen-
tally with shaker data. It was observed quadratic and
cubic stiffness and Coulomb friction nonlinearities in
the suspension system (McGee et al. 2005). A chaotic re-
sponse was presented by Zhu and Ishitobi (2006). They
used a 7-DoF model with tyre stiffness and suspension
spring stiffness nonlinearities. Bifurcation and chaotic
response of 2-DoF model with tyre stiffness and suspen-
sion spring stiffness nonlinearities were presented by
Lixia and Wanxiang (2008).
In the present analysis, a nonlinear quarter car model

having quadratic tyre stiffness and cubic stiffness in sus-
pension spring nonlinearities are considered.
A human model suggested by (Boileau and Rakheja

1998) is incorporated further in this study. The model is
having 4-DoFs consisting of head and neck mass (mh),
chest and upper torso mass (mut), lower torso mass
(mlt), and thigh and pelvis mass (mt). The human model
considers typical driving conditions such as seated pos-
ture with feet support and hands held in driving condi-
tions (refer to Fig. 1).
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According to D’Alembert’s principle, the governing
equations of motion representing nonlinear quarter car
suspension-seat-human model are represented as –

mus€xus ¼ −kt xus−xrð Þ þ ks xs−xusð Þ þ cs _xs− _xusð Þ þ ktnl xus−xrð Þ2

þksnl xs−xusð Þ3− f

ms€xs ¼ −ks xs−xusð Þ−cs _xs− _xusð Þ−ksnl xs−xusð Þ3 þ k f x f −xs
� �

þc f _x f − _xs
� �þ f

mf €x f ¼ −k f x f −xs
� �

−c f _x f − _xs
� �þ kc xc−x f

� �þ cc _xc− _x f
� �

mc€xc ¼ −kc xc−x f
� �

−cc _xc− _x f
� �þ ktp xt−xcð Þ þ ctp _xt− _xcð Þ

mt€xt ¼ −ktp xt−xcð Þ−ctp _xt− _xcð Þ þ klt xlt−xtð Þ þ clt _xlt− _xtð Þ

mlt€xlt ¼ −klt xlt−xtð Þ−clt _xlt− _xtð Þ þ kut xut−xltð Þ þ cut _xut− _xltð Þ

mut€xut ¼ −kut xut−xltð Þ−cut _xut− _xltð Þ þ kh xh−xutð Þ þ ch _xh− _xutð Þ

mh€xh ¼ −kh xh−xutð Þ−ch _xh− _xutð Þ

g

ð1Þ

The nonlinear quarter car seat-suspension-human
model parameters are as follows:

mh = 5.31; ch = 400; kh = 310,000;
mut = 28.49; cut = 4750; kh = 183,000;

mlt = 8.62; clt = 4585; klt = 162,800;
mt = 12.78; ct = 2064; kt = 90,000;
mc = 1; cc = 200; kc = 18,000;
mf = 15; cf = 830; kf = 31,000;
ms = 290; cs = 700; ks = 23,500; ksnl = 100ks (Lixia and
Wanxiang 2008);
mus = 40; kt = 190,000; ktnl = 1.5 kt (Zhu and Ishitobi
2006).

The nonlinear quarter car having quadratic stiffness
nonlinearity in the tyre and cubic stiffness in suspension
spring is modeled and simulated in Matlab/Simulink®.
Further, the simulations are carried out on a quarter car
model with seat consisting frame and cushion with a hu-
man model.

Control theory—PID control
PID stands for proportional, integral, and derivative and
is a classical controller used for several control applica-
tions (Metered et al. 2015; Kesarkar and Selvaganesan
2015; Niu 2014; Gad et al. 2017; Tammam et al. 2013;
Abdelrassoul et al. 2016; Chen and Chang 2006). The
PID controllers are so designed that continuous atten-
tion of the operator is eliminated. As the PID controller
has designed a derivative nature type, small variation of
output can be easily avoided. A PID controller is
depicted in Fig. 2. The set point is where the

Fig. 1 Nonlinear quarter car suspension system—with seat and human model (Nagarkar et al. 2016)
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measurement should be. An error is defined as the dif-
ference between the set point r(t) and measurement y(t).
PID computes the control signal based on the following
equations:

u tð Þ ¼ Kp e tð Þ þ Ki

Z
e tð Þdt þ Kd

d
dt

e tð Þ ð2Þ

e tð Þ ¼ r tð Þ−y tð Þ ð3Þ

The error, e(t), variable being adjusted is called the
manipulated variable which usually is equal to the out-
put of the controller. As there is a change in measure-
ment or set point, so is the output of the controller.
Generally, Z-N tuning or auto-tuning is used to tune the
P, I and D parameters of the controller.

Control theory—fuzzy logic control
FLC uses heuristic information for control applications.
The FLC uses rule-base derived through an operator’s
experience and thus acts as a human-in-the-loop con-
troller providing human experience to achieve high per-
formance (Kalaivani et al. 2014; Taskin et al. 2017;
Huang and Chao 2000).
Figure 3 represents the structure of a typical FLC im-

plemented for a 2-DOF suspension system. Here, two in-
puts (error e and ec) and one output (force fFLC) FLC
with rule-base is implemented. Sprung mass velocity
(error e) and acceleration (change in error ec) are used
as input, and control force (fFLC) is output. FLC rule
base is a linguistic-based rule base which incorporates
past human experience. Table 1 represents the rule base
for two input-one output rule base for ride comfort. Fig-
ure 4 represents the surface plot rule base as stated in
Table 1.

Fig. 2 PID control

Fig. 3 Fuzzy logic controller

Nagarkar et al. International Journal of Mechanical and Materials Engineering           (2018) 13:10 Page 5 of 20



Firstly, FLC decomposes the input into fuzzy sets,
called as fuzzification, using membership functions
(MF). Primarily membership functions map practical
space to fuzzy space, known as fuzzification. Here, trap-
ezoidal membership functions are used for input and
output variables (refer Figs. 5, 6, and 7). The FLC con-
sists of seven membership functions each, ie., for two in-
puts (error e and change in error ec) and an output fFLC;
these are NL, NM, NS, ZE, PS, PM, PL. Mamdani type
fuzzy inference system (FIS) is used. Defuzzification is
the process which maps the variables back to practical
space from fuzzy space. Centroid defuzzification method
is used in this FLC.

Objective functions
One of the key factors in optimization problems is to
choose proper objective functions. Here, the control
strategies are implemented to improve ride characterized

by RMS sprung mass acceleration, VDV, RMS suspen-
sion space deflection, RMS tyre deflection, and RMS
controller force.

RMS acceleration
As per ISO 2631-1 (1997), RMS acceleration is given by

Aws ¼ f1
T

Z T

0
½awðtÞ�2dtg

1
2

ð4Þ

A major portion of the vibration experienced by the
occupants of an automobile enters the body through the
seat (Van Niekerk et al. 2003; Bovenzi 2005). The health
risk increases as the exposure time to vibrations in-
creases. Hence, is it necessary to measure the whole
body vibrations for ride and health criterion. As per ISO
2631-1 (1997), VDV is one measure for whole body vi-
brations. VDV also called as fourth power vibration
dose. VDV is the method of assessing the cumulative ef-
fect (dose) of the vibration.

Vibration dose value (VDV)
VDV is the fourth power of acceleration time histories.
It is expressed as -

VDVs ¼
Z T

0
aw tð Þ½ �4dt

� �1
4

ð5Þ

Suspension travel
Suspension travel is characterized by the relative travel
between the sprung mass and unsprung mass. Due to

Table 1 Fuzzy logic rule table (2-DoF active suspension system)

f ec

e NL NM NS ZE PS PM PL

NL PL PL PM PS PS PS ZE

NM PL PM PS PS PS ZE NS

NS PM PS ZE ZE ZE NS NM

ZE PM PS ZE ZE ZE NS NM

PS PM PS ZE ZE ZE NS NM

PM PS ZE ZE ZE ZE NM NL

PL ZE NS NS NS NM NL NL

N negative, ZE zero, P positive, L large, M medium, S small

Fig. 4 Fuzzy logic rule—surface plot
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random input, RMS suspension space travel is taken as
one of the objective functions.

Suspension Travel ¼ xs−xus ð6Þ

RMS Suspension Travel ¼ 1
T

Z T

0
xs tð Þ−xus tð Þð Þ½ �2dt

� �1
2

ð7Þ

Dynamic tyre deflection
Dynamic tyre force is related to tyre deflection. Due to
the random nature of input, the RMS of tyre deflection
is the next objective function.

Tyre Deflection ¼ xus−xr ð8Þ

RMS Tyre Deflection ¼ 1
T

Z T

0
xus tð Þ−xr tð Þð Þ½ �2dt

� �1
2

ð9Þ
Control force is introduced as one of the objective

functions, to find optimum control force to achieve ride
comfort.

RMS f ¼ 1
T

Z T

0
f tð Þð Þ½ �2dt

� �1
2

ð10Þ

According to Baumal et al. (1998), at least, 125 mm of
suspension travel is required, and maximum seat acceler-
ation should not increase 4.5 m/s

2
to avoid hitting the sus-

pension stop. To minimize dynamic tyre forces, maximum
tyre deflection should not increase 0.0508 m. These parame-
ters are included as constraints in the optimization problem.

Fig. 5 Membership function (e)

Fig. 6 Membership function (ec)
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The formulation of the optimization problem is as follows:

f ob j1 ¼ Minimize ðRMS f Þ

f obj2 ¼ Minimize VDVsð Þ

f obj3 ¼ Minimize Awsð Þ

f obj4 ¼ Minimize RMS Suspension Travelð Þ

f obj5 ¼ Minimize RMS Tyre Deflectionð Þ

Subject to constraints:

amax seat ≤ 4:5
m
s2
; Max:ðxs−xusÞ ≤0:125m;

Max:ðxus−xrÞ ≤0:0508m; fmax≤2000 N:

Multi-objective optimization
Researchers have invented several meta-heuristic
optimization algorithms to optimize the problems in
several fields. These algorithms have implemented on
several mathematical problems involving single objective
optimization to multi-objective optimization and pro-
vided excellent results.
The suspension system has to perform several conflict-

ing objectives such as ride comfort, road holding, and

suspension/rattle space requirements. Thus, the
optimization problem becomes a multi-objective type
(consisting of RMS control force, VDV, RMS sprung
mass acceleration, RMS suspension space requirement,
and RMS dynamic tyre deflection as objective functions)
with conflicts. As compared to a single objective
optimization problem, a multi-objective optimization
(MOO) problem has to satisfy several objectives simul-
taneously. Hence, multi-objective optimization using a
genetic algorithm (GA) (Holland 1992; Holland 1975) is
implemented to solve the optimization problem.
In the solution of MOO problems, MOO forms a

Pareto optimal front consisting of multiple optimal solu-
tions. GA is implemented to optimize in multiple do-
mains as it handles complex optimization problems with
discontinuities, non-differentials, noisy functions, and
functions with multi-modality. GA also supports parallel
computations with obtaining Pareto front in a single
run. Non-dominated sort GA-II (NSGA-II) (Deb et al.
2002) is one of the MOEAs using GA strategy. NSGA-II
implements non-dominated sort algorithm thus redu-
cing the computational complexities. While sorting the
parents and children, elitism is introduced in NSGA-II.
In NSGA-II, to preserve the diversity and uniform
spread of optimal front, a crowding distance (CD) (Deb
et al. 2002) operator is used. Chromosomes with better
fitness are assigned highest ranks, and thus, they deter-
mine the domination.
From the non-dominated front, parents are selected by

tournament selection and compared to the CD. New

Fig. 7 Membership function (U)

Table 2 Membership functions
MF Input 1 (e) Input 2 (ec) Output (f)

NL [− 1– 1 − 0.7 − 0.4] [− 1 − 1 − 0.6 − 0.3] [− 1 − 1 − 0.9 − 0.6]

NM [− 0.7− 0.5 − 0.3 − 0.05] [− 0.6 − 0.4 − 0.3 − 0.1] [− 0.9 − 0.7 − 0.5 − 0.2]

NS [− 0.4 − 0.2 − 0.1 0] [− 0.3 − 0.2 − 0.1 0] [− 0.6 − 0.3 − 0.2 0]

ZE [− 0.05 − 0.01 0.01 0.05] [− 0.1 − 0.025 0.025 0.1] [− 0.2 − 0.05 0.05 0.2]

PS [0 0.1 0.2 0.4] [0 0.1 0.2 0.3] [0 0.2 0.3 0.6]

PM [0.05 0.3 0.5 0.7] [0.1 0.3 0.4 0.6] [0.2 0.5 0.7 0.9]

PL [0.4 0.7 1 1] [0.3 0.6 1 1] [0.6 0.9 1 1]

Table 3 Design variables range—PID Control
Design
variable

Range Size

Kp 15,000–2000 = 13,000 213 = 8192 < 13,000 < 214 = 16,384 14 bits

Ki 150–10 = 140 27 = 128 < 140 < 28 = 256 08 bits

Kd 50,000–15,000 = 35,000 215 = 32,768 < 35,000 < 216 = 65,536 16 bits
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off-springs are created using a crossover operator and
mutation operator. New off-springs and current popula-
tion (parents) are combined to generate a new popula-
tion. Selection is carried out for next generation
individuals. The binary tournament selection method is
used by NSGA-II to handle constraints. For
multi-objective optimization, NGPM code (NSGA-II

Program in Matlab) is used (Song 2011; Song 2015).
NGPM is the implementation of NSGA-II (non-domi-
nated sort genetic algorithm) in Matlab.

Optimization methodology—PID control
During simulation and optimization of PID controller,
PID parameters are randomly initialized, and objective
functions are determined. Then, optimum PID parame-
ters are iteratively obtained till algorithm stops. The
classical PID gains are determined using the Z-N
method.
Search space for PID controller is as follows -

Kp∈ 2000; 15000½ �;Ki∈ 10; 150½ �;Kd∈ 15000; 50000:½ �

Optimization methodology—fuzzy logic control
FLC is a typical two input-one output functions control-
ler. In this design, initially, seven trapezoidal member-
ship functions are defined for two inputs and output.
The seven membership functions are initialized in the
range of [− 1 1] and are then multiplied using respective
scale factors. Table 2 represents the initial membership
functions in the range of [− 1 1]. Also, error (e), change
in error (ec) and control output (f ) are scaled using scal-
ing factors ke, kec, and kf respectively and included in
the Simulink® model.
During optimization, values are randomly initialized

and the model is simulated to determine objective func-
tions. Then, iteratively optimum parameters are obtained
from their ranges till the algorithm stops.
The search space for the input-output functions and

scaling factors is as follows:

Input Function1∈ 1; 10½ �; Input Function2∈ 1; 10½ �;
Output Function1∈ 1; 10½ �

ke∈ −5; 5½ �; kec∈ −5; 5½ �; kf∈ 0; 25½ �

NSGA-II—population range
In GA, the range of design variable Kp is (15000–2000=)
13,000. Thus, the design variable Kp needs to be divided
into 13,000 equal range of size. Hence, 213 = 8192 <

Fig. 8 Flow chart—GA (Nagarkar et al. 2016)

Table 4 ISO Road classification (ISO 8608 (1995))

Road class Degree of roughness ϕ(no) (10
− 6 m2/(cycle/m))

Where no = 0.1 cycle/m

Lower limit Geometric mean Upper limit

A (very good) – 16 32

B (good) 32 64 128

C (average) 128 256 512

D (poor) 512 1024 2048

E (very poor) 2048 4096 8196
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13,000 < 214 = 16,384, i.e., 14 bits are required to store
the value of design variable Kp in the chromosome.
Similarly, for other design variables, the bit required is
tabulated in Table 3.
Hence, the total length of chromosome or gene is 14

+ 08 + 16 = 38 bits that are required, where the first
14 bits are required for Kp, the next 08 bits are required
for Ki, and the next 16 bits are required for Kd. Popula-
tion size is selected such that

Ns < population size < 2Ns, where Ns = string length
(Alander 1992)
Also, the range of variables for the FLC design variables

is small as compare to the PID controller. Thus, selecting
population size of 100 (Rosenthal and Borschbach 2014;
Hernández-Díaz et al. 2008; Nagarkar et al. 2016) and
optimization is stopped after 100 generations. Figure 8 ex-
plains the flowchart of the GA algorithm implemented for
multi-objective optimization.

Fig. 9 Road surface (class C, velocity 80 kmph)

Fig. 10 Trade-off front—PID Control
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Results and discussion
Multi-objective optimization of the non-linear
quarter-car model is simulated in a Matlab/Simulink®
environment using NSGA-II algorithm.
The stationary road roughness is effectively described

by power spectral density (PSD). When a car moves at a
constant velocity v, the road roughness can be viewed as
a stationary process in the space domain. The differen-
tial equation of road roughness can be expressed as (He
et al. 2008; Zhang et al. 2007):

_xr tð Þ þ 2πnovxr tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sq noð Þv

q
w tð Þ ð11Þ

Equation (11) is modeled in the Simulink environment
to model the road surface. According to ISO 8608, roads
are divided into classes like A, B, C, D, and E. Class A
and B represents expressways or motorways, whereas
class C road is a typical average road type. Class B and C
roads are generally country or district roads. Class C
road considers velocities of typical secondary roads ran-
ging from ~ 30 kmph to ~ 60 kmph. The input road
condition is modeled as class C road (average road) with
a degree of road roughness 512 × 10−6 m2/(cycle/m)
(Zhang et al. 2007; ISO 8608 1995). Refer to Table 4 for
the road roughness classification. The vehicle is traveling
with a velocity of 80 kmph. Figure 9 represents the class
C road surface.

PID controller
The trade-off front of 100 different solutions for object-
ive functions satisfying the constraints is obtained after
optimization. The trade-off front is shown in Fig. 10. For
ride comfort and health criterion, RMS acceleration and
VDV are selected as optimum values. Hence, for PID
controller P, D and D parameters’ gain values are se-
lected for minimum valued of RMS acceleration and
VDV and simulated further. Refer to Table 7 for the cor-
responding optimized PID parameters.
It is observed that the RMS acceleration for the

GA-optimized PID controller is 0.6178 m/s2, which is a
little uncomfortable. In GA-PID controlled system, RMS

acceleration is reduced by 34% (passive suspension sys-
tem has RMS acceleration 0.9322 m/s2 which is uncom-
fortable) and is reduced by 10% as compared to the
classical PID control. For GA optimized PID controller,
VDV is reduced by 33% as compared to the passive sus-
pension system and is reduced by 11% as compared to
classical PID control. Also, constraints are not violated
in the GA optimized system. The results of RMS optimal
control force, RMS sprung mass acceleration, RMS sus-
pension space, RMS tyre deflection, maximum controller
force, and maximum sprung mass acceleration are tabu-
lated in Table 5 (refer to Fig. 11 for time domain
results).
Further frequency domain analysis is carried out for

the PID controlled system and passive system. In fre-
quency analysis, it is observed that the optimized PID
controlled system experiences low amplitudes of body
accelerations as compared to the passive suspension sys-
tem (refer to Fig. 12). PID can reduce the amplitude of
body accelerations at points 100 and 101 Hz frequencies.
Also, it shows better performance over higher amplitude
regions > 10 Hz.

Fuzzy logic control
During simulation 2-DOF nonlinear active suspension
system, it is excited by a random road disturbance. The
NSGA-II-based optimization is carried out and results
are obtained using a MATLAB/SIMULINK. The velocity
and acceleration of sprung mass are selected as an error
(e) and change in error (ec) feedback signals for the
2-DOF suspension system control.
The trade-off front of 100 different solutions for ob-

jective functions satisfying the constraints is obtained
after optimization. The trade-off front is shown in
Fig. 13. For ride comfort and health criterion, the mini-
mum RMS acceleration and VDV are selected as
optimum values. Hence, FLC parameters, ke, kc, kf, and
scaling factors for input-output membership functions
are selected having minimum values of RMS acceler-
ation and VDV corresponding to the trade-off front and

Table 5 Optimization results—objective function and constraints
Parameter Fuzzy logic control-GA PID-GA PID classical Passive system

RMS control force (N) 140.9662 445.4385 346.8979 –

VDV (m/s1.75) 1.1782 1.4410 1.6174 2.1509

Aw (m/s2) 0.5057 0.6178 0.6890 0.9322

RMS suspension space deflection (m) 0.0085 0.01007 0.008700 0.009311

RMS tyre deflection (m) 0.0042 0.008864 0.007300 0.004473

Max control force (N) 345.6605 1423.1810 1173.24400 –

Max acceleration (m/s2) 2.31900 1.8615 2.1800 3.16720

Max suspension space deflection (m) 0.02520 0.03426 0.03050 0.02640

Max tyre deflection (m) 0.01350 0.02639 0.02510 0.01840
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Fig. 12 PID control results—frequency domain

Fig. 11 PID control results—time domain
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Fig. 14 Fuzzy logic control results—time domain

Fig. 13 Trade-off front—fuzzy logic control
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are simulated further. Refer to Table 7 for the corre-
sponding optimized FLC parameters.
It is observed that RMS acceleration for the

GA-optimized FLC is 0.5057 m/s2, which is a little un-
comfortable. In the fuzzy logic control system, RMS ac-
celeration is reduced by 46% as compared to the passive
system (passive suspension system has RMS acceleration
0.9322 m/s2 which is uncomfortable) and by 18% as
compared to GA-based PID controller. Also, VDV for
GA-based FLC is reduced by 45% as compared to the
passive suspension system and by 18% as compared to
the GA-based PID controller. Also, the RMS suspension
space and RMS tyre deflection are less for FLC as

compared to the GA-based PID controller and passive
suspension system. The constraints are not violated in GA
optimized FLC. The results of RMS optimal control force,
RMS sprung mass acceleration, RMS suspension space,
RMS dynamic tyre deflection, and maximum controller
force are maximum sprung mass acceleration are tabu-
lated in Table 5 (refer to Fig. 14 for the time domain
results). Results are also shown in the bar chart (refer to
Fig. 15).
From simulations and Table 5, it is observed that the

GA-tuned FLC controller performs better as compared
to the GA-tuned PID controller. In the case of
GA-tuned FLC controller, VDV and RMS acceleration is

Fig. 16 Fuzzy logic control results—frequency domain

Fig. 15 Optimization results—objective functions and constraints
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reduced by 18.23% and 18.14% as compared to the
GA-tuned PID controller. Also, RMS suspension space
deflection and RMS tyre deflection is less for the
GA-tuned FLC controller.
Further, the frequency domain analysis is also carried

out for the FLC system and passive system. For fre-
quency analysis, it is observed that the FLC system expe-
riences low amplitudes of vibrations over a broader
range of frequencies as compared to the passive suspen-
sion system (refer to Fig. 16). The FLC can reduce the
amplitude of body accelerations at points 100 and
101 Hz frequencies and also shows better performance
over higher amplitude regions > 10 Hz.
Further, to study the controller performance, the non-

linear quarter car suspension system is simulated over
class C and class D roads with vehicle speed ranging
from 20 to 160 kmph. Figure 17 shows performance
over class C road type. For class C road, the maximum
value of VDV is 1.8385 m/s1.75 and is observed at
160 kmph, for GA-tuned PID controller. Whereas for

the GA-based FLC maximum VDV is 1.7205 m/s1.75.
The maximum value of RMS sprung mass acceleration
is 0.7910 m/s2 for the GA-tuned PID controller and
0.7065 m/s2 for the GA-FLC controller and is observed
at 160 kmph. From Fig. 17, it is observed that, for FLC
controller, up to 130 kmph speed, the RMS sprung mass
acceleration is in a slightly uncomfortable region as per
ISO2631-1:1997. Whereas for the PID controller, the
same level is achieved up to 100 kmph. Above these
speed limits, the RMS sprung mass acceleration falls
under the fairly uncomfortable region. Other parameters
like RMS suspension space and RMS tyre deflection are
also represented in Fig. 17.
The non-linear quarter car is also simulated over class

D road. Figure 18 shows the performance of the nonlin-
ear quarter car with both controllers over class D road.
From the figure, it is observed that FLC and PID con-
troller shows nearly the same performance for the RMS
sprung mass acceleration. The VDV value is maximum
at 160 kmph for both controllers. The maximum VDV

Fig. 17 Performance of FLC and PID controller—class C road
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for PID controller is 2.1874 m/s1.75 and for FLC controller
VDV is on the slightly higher side and is 2.6091 m/s1.7.
The maximum RMS sprung mass is the acceleration is
observed at 160 kmph for both controllers and is
0.9391 m/s2 for the GA-tuned PID controller and
0.9586 m/s2 for GA-FLC controller respectively. From
Fig. 18, it is observed that for FLC controller, up to
80 kmph speed, the RMS sprung mass acceleration is in a
slightly uncomfortable region whereas for PID controller,
the same level is achieved up to 70 kmph as per
ISO2631-1:1997. Above these speed limits, RMS sprung

mass acceleration falls under the fairly uncomfortable
region.
To check the effect of vibrations on a human body,

the suspension system along with the human model is
simulated. The nonlinear quarter car along with seat and
human model is simulated using PID and FLC system
and compared with a passive system. VDV at the head,
RMS head acceleration, crest factor, and amplitude ratios
are observed.
Crest factor (CF) is defined as the ratio of maximum

head acceleration to the RMS head acceleration [26].

CF ¼ Max

 
ah

!
=

1
T

Z T

0
awh tð Þ½ �2dt

� �1
2

ð12Þ

The amplitude ratio of head RMS acceleration to seat
RMS acceleration (AR_h) is defined as the ratio of the
RMS head acceleration to the RMS seat acceleration
(Nagarkar et al. 2016).

Fig. 18 Performance of FLC and PID controller—class D road

Table 6 Human model results—FLC, PID, and passive system

Parameter FLC PID Passive system

VDV_h (m/s1.75) 2.8938 2.8787 4.8180

Aw_h (m/s2) 1.1083 1.1082 2.0408

CF 2.6811 3.3829 3.3109

AR_h 0.9684 1.0192 1.2033

AR_ut 0.9345 1.0277 1.1969
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AR h ¼ 1
T

Z T

0
ah tð Þ½ �2dt

� �1
2

=
1
T

Z T

0
as tð Þ½ �2dt

� �1
2

ð13Þ

The amplitude ratio of upper torso RMS acceleration
to seat RMS acceleration (AR_ut) is defined as the ratio
of the RMS upper torso acceleration to the RMS seat ac-
celeration (Nagarkar et al. 2016).

AR ¼ 1
T

Z T

0
aut tð Þ½ �2dt

� �1
2

=
1
T

Z T

0
as tð Þ½ �2dt

� �1
2

ð14Þ

It is observed that the RMS head acceleration is re-
duced by 39% in the case of the GA-based FLC and re-
duced by 46% in the case of the GA-based PID
controller as compared to the passive suspension system,
whereas VDV at the head is reduced by 39% and 41% for

Fig. 19 Human model results

Fig. 20 Head acceleration time domain results—PID and passive suspension system
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FLC and PID controller as compared to the passive sys-
tem. CF, AR_h, and AR_ut parameters are reduced for
FLC as compared to the PID and passive suspension sys-
tem. Results are tabulated in Table 6 and are presented
in the bar chart (refer to Fig. 19).
From Table 6 and Fig. 19, it is observed that the

GA-tuned FLC has RMS acceleration of head and
VDV at head slightly greater (1.9% and 1%

respectively) as compared to the GA-tuned PID con-
troller. But, FLC gives better results as compared to
the PID controller for CF, AR_h, and, AR_ut (20.75%,
4.98%, and 9.07% less respectively as compared to
PID controller).
From frequency domain results, it is observed that the

PID controller experiences low amplitude of vibrations
at the head as compared to the passive system. FLC also

Fig. 21 Head acceleration time domain results—FLC and passive suspension system

Fig. 22 Head acceleration frequency domain results—FLC, PID, and passive suspension system
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experiences low amplitude of vibrations at a broader
range of frequencies. FLC and PID controller improves
amplitude of vibrations at head around 100 Hz regions,
which is the most sensitive region related to ears and
eyes. Refer Figs. 20 and 21 for time domain results and
Fig. 22 for frequency domain results.

Conclusions
This paper presents mathematical modelling, control,
and multi-objective optimization of an active nonlinear
quarter car suspension system. A nonlinear 2-DoF non-
linear quarter car model having quadratic nonlinearities
in the tyre and cubic nonlinearity in suspension spring is
developed and implemented for control applications.
The PID and FLC strategies are implemented on a

nonlinear quarter car system. Controller parameters
such as P, I, and D parameters of the PID controller and
input-output membership functions’ range and scaling
factors of the FLC are then tuned using NSGA-II algo-
rithm (Table 7). In optimization problem comfort and
health criterion consisting of VDV, RMS acceleration, along
with stability criterions consisting of suspension space and
tyre deflection are used as objective functions. ISO 2631-1
methodology is adopted and successfully implemented.
Numerical simulations show that the GA-based FLC active
control system minimizes the frequency-weighted RMS ac-
celeration and VDV as compared to the PID and passive
suspension system thus improving the ride comfort. Results
are also presented in the frequency domain which shows
that the active control system experiences less amplitude as
compared to the passive one.
Further results are extended on a human model, which

shows that the active control system shows minimum
RMS head acceleration, VDV at the head, crest factor, and
amplitude ratio at the head and amplitude ration at upper
torso, thus providing comfort with health criterion.

Abbreviations
Aw: Frequency-weighted RMS head acceleration (m/s2); aw: Frequency-
weighted sprung mass acceleration (m/s2); c: Damping coefficient (Ns/m);
ch: Cervical spine damping (Ns/m); clt: Lumber spine damping (Ns/m);
cut: Thoracic spine damping (Ns/m); f: Control force (N); fobj: Objective
function; k: Stiffness (N/m); ke, kec, ku: Scaling factors for error, change in
error, and force respectively; kh: Cervical spine stiffness (N/m); klt: Lumber
spine stiffness (N/m); Kp, Ki, Kd: PID gains—proportional, integral, and
derivative respectively; ksnl: Nonlinear spring stiffness (N/m3); kt: Tyre stiffness
(N/m); ktnl: Nonlinear tyre stiffness (N/m2); kut: Thoracic spine stiffness (N/m);
m: Mass (kg); no: Reference spatial frequency = 0.1(cycles/m);

Sq(no): Coefficient of road roughness; v: Velocity (m/s); VDV: Vibration dose
value (m/s1.75); w(t): White noise signal having PSD = 1; x, ẋ, ẍ: Displacement
(m), velocity (m/s), and acceleration (m/s2); xr: Road profile (m);

Subscripts
c: Seat cushion; f: Frame; h: Head; lt: Lower torso; s: Sprung; t: Thigh and
pelvis; us: Unsprung; ut: Upper torso
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