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Comparison of varieties of numerical
methods applied to lid-driven cavity flow:
coupling algorithms, staggered grid vs.
collocated grid, and FUDS vs. SUDS
A. A. Boroujerdi* and M. Hamzeh

Abstract

The effectiveness of different methods, schemes, algorithms, and approaches is of substantial challenging problems
in numerical modeling of transport phenomena. In the present paper, a lid-driven cavity problem is modeled via
two basically different approaches of spatial discretization: collocated and staggered. The non-dimensionalized
governing equations are semi-discretized by using a finite volume approach. Then, the full discretization is
performed in each of collocated and staggered grids, separately. Upwind and central difference schemes are
implemented in order to discretize the convective and diffusion terms of equations, respectively. After mesh
independency study, the performances of collocated and staggered grids in comparison with the reference
benchmark are presented. Next, the effectiveness of the first and the second order upwind schemes are presented,
as well as different coupling algorithms of SIMPLE, SIMPLEC, and SIMPLER. Finally, an overall comparison of the
methods is provided and acceptable agreements with benchmark are attained.

Keywords: Numerical simulation, Collocated, Staggered, Lid-driven cavity, Upwind scheme, Coupling algorithm

Introduction
As a classic problem, lid-driven cavity flow is widely imple-
mented in order to validate, compare, and investigate nu-
merical methods and schemes.
Staggered grid has been extensively used for the numer-

ical modeling of lid-driven cavity flows. A two-dimensional
computational model was developed to study the fluid dy-
namic behavior in a square cavity driven by an oscillating
lid using staggered grid-based finite volume method (Indu-
kuri and Maniyeri, 2018). The numerical simulations were
performed for the case of top wall oscillations for various
combinations of Reynolds number and frequencies. From
these simulations, an optimum frequency was chosen and
then the vortex behavior for the cases of parallel wall os-
cillations was explored. McDonough (2007) investigated
lid-driven cavity problem by use of a new form of large-
eddy simulation at moderate Reynolds number to demon-
strate the ability of the procedure to automatically predict

transition to turbulence. They reported parallel speedups
observed on a general-purpose symmetric multiprocessor
employing MPI for parallelization. Gutt and Groşan
(2015) analyzed the motion of an incompressible viscous
fluid through a porous medium located in a two-
dimensional square lid-driven cavity flow described by a
generalized Darcy–Brinkman model. The effect of inertia
and rheology parameters on the flow of viscoplastic fluids
inside a lid-driven cavity is investigated using a stabilized
finite element approximation (dos Santos et al. 2011).
Patil, Lakshmisha, and Rogg (2006) presented the results
for deep cavities with aspect ratios of 1.5–4, and Reynolds
numbers of 50–3200. Several features of the flow, such as
the location and strength of the primary vortex, and the
corner-eddy dynamics were investigated and compared
with previous findings from experiments and theory.
Direct numerical simulations about the transition

process from laminar to chaotic flow in square lid-driven
cavity 2D incompressible flow with increasing Reynolds
numbers flows were considered by (Peng, Shiau, and
Hwang, 2003). The spatial discretization consisted of a
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seventh-order upwind-biased method for the convection
term and a sixth-order central method for the diffusive
term.
Collocated grid arrangement is also implemented in

order to simulate lid-driven cavity flows. Peng (Ding,
2017) employed the SIMPLE algorithm and its variants to
solve the driven-cavity problem at Re < 10,000 by propos-
ing a new segregated solver for determining the solution
of incompressible flow on structured collocated grid sys-
tems. Case studies of steady incompressible flow in a 2D
lid-driven square cavity were investigated for 100 < Re <
5000 by AbdelMigid et al. (Tamer, Khalid, Mohamed, and
Ahmed, 2017). Collocated grid arrangement along with a
uniform structured Cartesian grid was used. Yapici, Kara-
sozen, and Uludag (2009) presented a finite volume tech-
nique for the numerical solution of steady laminar flow of
Oldroyd-B fluid in a lid-driven square cavity over a wide
range of Reynolds and Weissenberg numbers. Second-
order central difference (CD) scheme was used for the
convection part of the momentum equation while first-
order upwind approximation was employed to handle
viscoelastic stresses. In another work, a numerical collo-
cated finite volume method was presented to study Buon-
giorno’s nanofluid model for MHD mixed convection of a
lid-driven cavity filled with nanofluid (Elshehabey and
Ahmed, 2015).

Methods
Aim and design for the study
The principal aim of the following research is to compare
different computational methods for simulation of a cavity
fluid flow driven by a moving lid and to introduce appro-
priate schemes. The model is based on the finite volume
method of the governing equation semi-discretization in
two over ally different formulations of staggered and col-
located grid systems. The full discretization is made by
both the first-order and the second-order upwind
schemes. Three different coupling algorithms of SIMPLE,
SIMPLEC, and SIMPLER are developed. Afterward, the
results of all the methods are compared.

Description of the methodology
Semi-discretization of governing equations
The physical and computational domains of the problem
area square cavity with the dimensions of L whose upper
lid is moving rightward with the velocity of u0. The ori-
gin of the Cartesian coordinate is located at the left
lower corner of the cavity.
In order to simplify the model, we consider the follow-

ing assumptions:

1) Working fluid is incompressible.
2) The shear stress tensor is proportional to the

deformation rate (Newtonian fluid)

3) There are no external body forces.
4) The flow is laminar.

The governing equations are continuity and momentum
equations, which for a steady laminar flow of incompress-
ible fluid with constant viscosity and no external force are
as follows:

∂u�

∂x�
þ ∂v�

∂y�
¼ 0 ð1Þ

∂
∂x�

u�2
� �þ ∂

∂y�
u�v�ð Þ ¼ −

1
ρ�

∂P�

∂x�

þ μ�

ρ�
∂2u�

∂x�2
þ ∂2u�

∂y�2

� �
ð2Þ

∂
∂x�

u�v�ð Þ þ ∂
∂y�

v�2
� � ¼ −

1
ρ�

∂P�

∂y�

þ μ�

ρ�
∂2v�

∂x�2
þ ∂2v�

∂y�2

� �
ð3Þ

Making governing equations non-dimensional enables
us to incorporate some fluid and geometric parameters
and to generalize the results of the simulation. We scale
the x and y coordinates by the dimension of cavity L, the
velocities by lid velocity, and pressure by dynamic pres-
sure as described below:

x ¼ x�

L�
; y ¼ y�

L�
; u ¼ u�

u�0
; v ¼ v�

u�0
;

P ¼ P�−P�
0

1
2
ρ�u�0

2
ð4Þ

Substituting the definitions, one can attain non-
dimensionalized equations:

∂u
∂x

þ ∂v
∂y

¼ 0 ð5Þ

∂
∂x

u2
� �þ ∂

∂y
uvð Þ ¼ −

∂P
∂x

þ 1
Re

∂2u
∂x2

þ ∂2u
∂y2

� �
ð6Þ

∂
∂x

uvð Þ þ ∂
∂y

v2
� � ¼ −

∂P
∂y

þ 1
Re

∂2v
∂x2

þ ∂2v
∂y2

� �
ð7Þ

The fluid properties are incorporated into Reynolds
number:
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Re ¼ ρ�u�0L
�

μ�
ð8Þ

The next step is to discretize the computational do-
main. Whether the grid system is collocated or stag-
gered, integrating governing Eqs. (5)–(7) over an
arbitrary control volume depicted in Fig. 2 gives semi-
discretized Eqs. (9)–(11).

Aeûe−Awûw½ � þ Anv̂n−Asv̂s½ � ¼ 0 ð9Þ

Aeûeue−Awûwuw½ � þ Anv̂nun−Asv̂sus½ �
¼ −

∂P
∂x

����
P

APΔxP

þ 1
Re

Ae
∂u
∂x

����
e

−Aw
∂u
∂x

����
w

þ An
∂u
∂y

����
n

−As
∂u
∂y

����
s

� �
ð10Þ

Anv̂nvn−Asv̂svs½ � þ Aeûeve−Awûwvw½ �
¼ −

∂P
∂y

����
P

APΔyP

þ 1
Re

Ae
∂v
∂x

����
e

−Aw
∂v
∂x

����
w

þ An
∂v
∂y

����
n

−As
∂v
∂y

����
s

� �
ð11Þ

The velocities with that are convecting velocities,
which convey mass or momentum of fluid parcels. Con-
sidering uniform Cartesian grid and Δx =Δy, divide the
last three equations by cross-sectional area, we have

ûe−ûw½ � þ v̂n−v̂s½ � ¼ 0 ð12Þ

ûeue−ûwuw½ � þ v̂nun−v̂sus½ �
¼ Pw−Peð Þ þ 1

Re
∂u
∂x

����
e

−
∂u
∂x

����
w

þ ∂u
∂y

����
n

−
∂u
∂y

����
s

� �
ð13Þ

v̂nvn−v̂svs½ � þ ûeve−ûwvw½ �
¼ Ps−Pnð Þ þ 1

Re
∂v
∂x

����
e

−
∂v
∂x

����
w

þ ∂v
∂y

����
n

−
∂v
∂y

����
s

� �
ð14Þ

The above equations govern all the control volumes
and are applicable for both collocated and staggered
grid. In the following section, the discretization of the
equations for the collocated and staggered grid will
be presented in details.

Discretization in staggered grid
The schematic of staggered grid arrangement is
depicted in Fig. 2. Apparently, the u, v, and scalar
(pressure) control volumes are staggered with respect
to each other. Firstly, consider x-momentum Eq. (13)
for non-boundary u-control volumes shown in Fig. 2.
Approximate the diffusion terms of viscous stresses
by central difference scheme.

ûeue−ûwuw½ � þ v̂nun−v̂sus½ �
¼ Pw−Peð Þ 1

ΔxRe
½ uE−uPð Þ− uP−uWð Þ þ uN−uPð Þ

− uP−uSð Þ�

ð15Þ

Approximate convecting velocities by the central lin-
ear scheme as follows:

ûe ¼ uP þ uE
2

¼ ui; J þ uiþ1; J

2
ð16Þ

ûw ¼ uW þ uP
2

¼ ui−1; J þ ui; J
2

ð17Þ

v̂n ¼ vI−1; j þ vI; j
2

ð18Þ

v̂s ¼ vI−1; jþ1 þ vI; jþ1

2
ð19Þ

The upwind scheme is implemented for convected vel-
ocities. In order to generalize the formulation, the rela-
tion is derived for the second order upwind. The scheme
can be simply changed to the first order upwind only by
setting the coefficients 1.5 and 0.5 to 1.0 and 0.0
respectively.

ûeue ¼ 1:5 max ûe; 0ð ÞuP −0:5 max ûe; 0ð ÞuW½ �
− 1:5 max −ûe; 0ð ÞuE−0:5 max −ûe; 0ð ÞuEE½ �

ð20Þ

ûwuw ¼ 1:5 max ûw; 0ð ÞuW −0:5 max ûw; 0ð ÞuWW½ �
− 1:5 max −ûw; 0ð ÞuP−0:5 max −ûw; 0ð ÞuE½ �

ð21Þ

Note that at the vertex points (s and n for x-mo-
mentum and w and e for y-momentum), term uv is
approximated by central difference scheme as
follows:
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v̂nun ¼ v̂n
uP þ uN

2
ð22Þ

v̂sus ¼ v̂s
uS þ uP

2
ð23Þ

The pressure force exerted on the faces of u-control
volume does not need to be approximated because the
faces of u-control volume coincide with pressure node,
so that

Pw−Peð Þ ¼ PI−1; J−PI; J
� � ð24Þ

Performing the aforementioned approximations for x-
momentum equation, we attained the following algebraic
linear equation based on the central node and neighbor-
ing node values of u-velocity.

aPuP ¼ aWWuWW þ aWuW þ aEuE þ aEEuEE
þ aSuS þ aNuN þ PI−1; J−PI; J

� � ð25Þ
The Eq. (25) whose coefficients are as follows governs

all the control volumes except for boundary volumes.

aP ¼ 1:5 max ûe; 0ð Þ þ 1:5 max −ûw; 0ð Þ
þ v̂n−v̂sð Þ

2
þ 4
ΔxRe

ð26Þ

aWW ¼ −0:5 max ûw; 0ð Þ ð27Þ

aW ¼ 0:5 max ûe; 0ð Þ þ 1:5 max ûw; 0ð Þ þ 1
ΔxRe

ð28Þ

aE ¼ 1:5 max −ûe; 0ð Þ þ 0:5 max −ûw; 0ð Þ
þ 1
ΔxRe

ð29Þ

aEE ¼ −0:5 max −ûe; 0ð Þ ð30Þ

aS ¼ v̂s
2
þ 1
ΔxRe

ð31Þ

aN ¼ −
v̂n
2
þ 1
ΔxRe

ð32Þ

The boundary conditions of x-momentum equation
are
Near left wall: for the first column of half-volumes

whose centers located at x = 0, the no-penetration condi-
tion must be satisfied.

uP ≡ ui; J ¼ 0 i ¼ 1 ; J ¼ 1 to n ð33Þ

For the second column of volumes, in the second-
order upwind scheme, uww does not exist, so the equa-
tions must be modified based on the first order upwind
as follows:

ûwuw ¼ max ûw; 0ð ÞuW½ �
− 1:5 max −ûw; 0ð ÞuP−0:5 max −ûw; 0ð ÞuE½ �

i ¼ 2 ; J ¼ 1 to n ð34Þ

Near right wall: for the last column of half-volumes
whose centers are located at x = 1, no-penetration condi-
tion must be satisfied.

uP ≡ ui; J ¼ 0 i ¼ nþ 1 ; J
¼ 1 to n ð35Þ

For one to the last column of volumes, the
discretization scheme must be amended.

ûeue ¼ 1:5 max ûe; 0ð ÞuP−0:5 max ûe; 0ð ÞuW½ �
− max −ûe; 0ð ÞuE½ �

i ¼ n ; J ¼ 1 to n ð36Þ

Lower wall control volumes (the first row), i.e., in the
vicinity of y = 0: in these volumes, the viscous term of
∂u/∂y must be approximated by forward scheme rather
than central scheme.

∂u
∂y

����
s

¼ uP−0ð Þ
Δy=2

ð37Þ

Where Uy = 0 is the velocity of the lower wall. Similarly,
for the upper wall at the vicinity of y = 1 the viscous
term of ∂u/∂y must be approximated by backward
scheme rather than central scheme

∂u
∂y

����
n

¼ u0−uPð Þ
Δy=2

ð38Þ

For four corners, a combination of the mentioned
boundary conditions must be used.
Similarly, consider y-momentum Eq. (14) for non-

boundary v-control volumes depicted in Fig. 2. To
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discretize diffusion terms for those CVs, we use the
CDS.

v̂nvn−v̂svs½ � þ ûeve−ûwvw½ �
¼ Ps−Pnð Þ 1

ΔxRe
½ vE−vPð Þ− vP−vWð Þ

þ vN−vPð Þ− vP−vSð Þ� ð39Þ

Approximate convecting velocities at four faces by
CDS.

ûe ¼ uiþ1; J−1 þ uiþ1; J

2
ð40Þ

ûw ¼ ui; J−1 þ ui; J
2

ð41Þ

v̂n ¼ vP þ vN
2

¼ vI; j þ vI; jþ1

2
ð42Þ

v̂s ¼ vS þ vP
2

¼ vI; j−1 þ vI; j
2

ð43Þ

The convected velocities at vertical faces are discre-
tized by the second-order upwind scheme. To alter the
scheme to the first order, the coefficients 1.5 and 0.5
should be changed to 1.0 and 0.0 respectively.

v̂nvn ¼ 1:5 max v̂n; 0ð ÞvP −0:5 max v̂n; 0ð ÞvS½ �
− 1:5 max −v̂n; 0ð ÞvN−0:5 max −v̂n; 0ð ÞvNN½ �

ð44Þ

v̂svs ¼ 1:5 max v̂s; 0ð ÞvS −0:5 max v̂s; 0ð ÞvSS½ �
− 1:5 max −v̂s; 0ð ÞvP−0:5 max −v̂s; 0ð ÞvN½ �

ð45Þ

Note that at the vertex points w and e, the term uv is
approximated by central difference scheme as follows:

ûeve ¼ ûe
vP þ vE

2
ð46Þ

ûwvw ¼ ûw
vW þ vP

2
ð47Þ

The pressures at vertical faces coincide with their
nodal points as follows:

Ps−Pnð Þ ¼ PI; J−1−PI; J
� � ð48Þ

The final form of discretized y-momentum equation
based on central and neighboring node values is as
follows:

aPvP ¼ aSSvSS þ aSvS þ aNvN þ aNNvNN
þ aWvW þ aSvS þ PI; J−1−PI; J

� � ð49Þ

The above equation dominates all the v-velocity CVs
except for boundaries. The relations of the coefficients
for the second order upwind are

aP ¼ 1:5 max v̂n; 0ð Þ þ 1:5 max −v̂s; 0ð Þ
þ ûe−ûwð Þ

2
þ 4
ΔxRe

ð50Þ

aSS ¼ −0:5 max v̂s; 0ð Þ ð51Þ

aS ¼ 0:5 max v̂n; 0ð Þ þ 1:5 max v̂s; 0ð Þ þ 1
ΔxRe

ð52Þ

aN ¼ 1:5 max −v̂n; 0ð Þ þ 0:5 max −v̂s; 0ð Þ
þ 1
ΔxRe

ð53Þ

aNN ¼ −0:5 max −v̂n; 0ð Þ ð54Þ

aW ¼ ûw
2

þ 1
ΔxRe

ð55Þ

aE ¼ −
ûe
2
þ 1
ΔxRe

ð56Þ

Boundary conditions of y-momentum equation are as
follows:
Near the bottom wall: the no-penetration condition

must be satisfied for the first row.

vP ≡ vI; j ¼ 0 j ¼ 1 ; I ¼ 1 to n ð57Þ
For the second row of v-velocity CVs, the second-

order upwind must be replaced by the first one at posi-
tive flow.

vsvs ¼ max v̂s; 0ð ÞvS½ �− 1:5 max −v̂s; 0ð ÞvP−0:5 max −v̂s; 0ð ÞvN½ � j
¼ 2 ; I ¼ 1 to n

ð58Þ
Near the top wall: the no-penetration condition must

be satisfied for the last row (y = 1)
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vP ≡ vI; j ¼ 0 j ¼ nþ 1 ; I
¼ 1 to n ð59Þ

For one to the last CV, the negative flow direction
must be approximated by the first-order upwind.

v̂nvn ¼ 1:5 max v̂n; 0ð ÞvP−0:5 max v̂n; 0ð ÞvS½ �− max −v̂n; 0ð ÞvN½ �
j ¼ n ; I ¼ 1 to n

ð60Þ

In the leftmost CVs (near x = 0), use forward difference
scheme instead of CDS for discretization of viscous
stress as

∂v
∂x

����
w

¼ vP−0ð Þ
Δx=2

ð61Þ

Where Vx = 0 is the left wall velocity.
For the rightmost CVs (near x = 1), implement the

backward scheme to discretize the diffusion term.

∂v
∂x

����
e

¼ 0−vPð Þ
Δx=2

ð62Þ

At four corners of the computational domain, a com-
bination of the described boundary conditions must be
utilized.
In order to implement the family of SIMPLE algo-

rithms, manipulate the continuity equation to attain an
algebraic equation in terms of nodal pressures to use in
couple with the momentum equations.

ue−uw½ � þ vn−vs½ � ¼ 0 ð63Þ

The velocities at the faces of scalar CVs are their nodal
values so

uiþ1; J−ui; J
	 
þ vI; jþ1−vI; j

	 
 ¼ 0 ð64Þ

According to the SIMPLE algorithm, the first step is
to guess the pressure field. Nevertheless, due to the non-
linearity of the momentum equation, the velocity field
must be guessed also. Consider the discretized momen-
tum equations for exact solution u and approximate so-
lution u*:

aPuP ¼
X

anbunb þ PI−1; J−PI; J
� � ð65Þ

aPu
�
P ¼

X
anbu

�
nb þ P�

I−1; J−P
�
I; J

� �
ð66Þ

Subtracting the last two equations gives

aP uP−u�P
� � ¼ X

anb unb−u�nb
� �

þ PI−1; J−P�
I−1; J

� �
− PI; J−P�

I; J

� �h i
ð67Þ

Define the exact pressure and velocity as the summa-
tion of approximate plus correction.

P ¼ P� þ P0 ð68Þ

u ¼ u� þ u0 ð69Þ
Note that a relaxation factor is used for pressure

correction.
Now, the x-momentum equation can be written as

follows:

aPu
0
P ¼

X
anbu

0
nb þ P0

I−1; J−P
0
I; J

h i
ð70Þ

SIMPLE algorithm ignores the first term of right-hand
side, whereas SIMPLEC uses the assumption of u’nb = u’P

u0P ¼ du
P P0

I−1; J−P
0
I; J

h i
ð71Þ

Where, du
P for algorithms SIMPLE and SIMPLEC

equals 1
ap and 1

ap−
P

anb
, respectively.

Similarly, for velocity v, we have the following
relations:

v ¼ v� þ v0 ð72Þ

v0P ¼ dv
P P0

I; J−1−P
0
I; J

h i
ð73Þ

Incorporating Eqs. (71) and (69), and Eqs. (73) and
(72) and then put the resulting relations in the continu-
ity equation yields the following algebraic equations:

du
i; J þ du

iþ1; J þ dv
i; J þ dv

i; Jþ1

� �
P0
P

¼ du
i; J P

0
W þ du

iþ1; JP
0
E þ dv

i; J P
0
S þ dv

i; Jþ1P
0
N þ b ð74Þ

Where the source term of b is

b ¼ u�i; J−u
�
iþ1; J

h i
þ v�I; j þ v�I; jþ1

h i
ð75Þ

In SIMPLER algorithm, the predictive pressure P* itself
is calculated in the initial stage by virtual velocity field.
To perform this, guess pressure and velocities and put
velocities in pressure-free momentum Eqs. (76) and (77)
to attain pseudo-velocities.

~u ¼
P

aunbu
�
nb þ b

auP
ð76Þ
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~v ¼
P

avnbv
�
nb þ b

avP
ð77Þ

Insert the pseudo-velocities into relations (78) and
(79), and then replace the real velocities in the continu-
ity equation. The result is an algebraic equation for the
predictive pressure P*. From this stage onwards, SIM-
PLER algorithm is similar to SIMPLE algorithm.

u ¼ ~uþ du PI−1; J−PI; J
� � ð78Þ

v ¼ ~vþ dv PI; J−1−PI; J
� � ð79Þ

Discretization in collocated grid
In collocated grid (see Fig. 1), faces and nodes of all the
variables are the same. The formulation of the collocated
grid is simpler than that of the staggered grid and of
course, is similar. One difference is in estimating the
convecting velocities.
We again recall semi-discretized conservation Eqs.

(12)–(14). According to Rhie and Chow, the convecting
velocity on a surface equals the average of two neighbor-
ing velocities on nodes, plus the third derivative of pres-
sure gradient function as follows:

ûe ¼ uP þ uE
2

þ −du
e

∂P
∂x

� �
e

þ 1
2
du
P

∂P
∂x

� �
P

þ 1
2
du
E

∂P
∂x

� �
E

� �
Δx

ð80Þ

v̂n ¼ vP þ vN
2

þ −dv
n

∂P
∂y

� �
n
þ 1
2
dv
P

∂P
∂y

� �
P
þ 1
2
dv
N

∂P
∂y

� �
N

� �
Δy

ð81Þ
Similarly, for û w and v̂s , similar relationships can be

derived.
For the non-boundary control volumes, we estimate

the pressure gradient terms of Eqs. (80) and (81) with
CDS as well as backward or forward linear approxima-
tion (depending on the flow direction) for boundary
control volumes. For non-boundary surfaces,

ûe ¼ uP þ uE
2

þ 1
2

du
P þ du

E

� �
PP−PEð Þ− 1

4
du
P

� �
PW−PEð Þ− 1

4
du
E

� �
PP−PEEð Þ

� �

ð82Þ

ûw ¼ uW þ uP
2

þ 1
2

du
W þ du

P

� �
PW−PPð Þ− 1

4
du
W

� �
PWW−PPð Þ− 1

4
du
P

� �
PW−PEð Þ

� �

ð83Þ

v̂n ¼ vP þ vN
2

þ 1
2

dv
P þ dv

N

� �
PP−PNð Þ− 1

4
dv
P

� �
PS−PNð Þ− 1

4
dv
N

� �
PP−PNNð Þ

� �

ð84Þ

v̂s ¼ vS þ vP
2

þ 1
2

dv
S þ dv

P

� �
PS−PPð Þ− 1

4
dv
S

� �
PSS−PPð Þ− 1

4
dv
P

� �
PS−PNð Þ

� �

ð85Þ
Pressures forces in the momentum equations are

Pw−Peð Þ ¼ PW þ PP

2
−
PP þ PE

2
¼ PW−PE

2
ð86Þ

Ps−Pnð Þ ¼ PS þ PP

2
−
PP þ PN

2
¼ PS−PN

2
ð87Þ

The final forms of the momentum equations for the
non-boundary control volumes are obtained as follows:

aPuP ¼
X

anbunb þ PW−PEð Þ=2 ð88Þ
Fig. 1 Arbitrary control volume
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aPvP ¼
X

anbvnb þ PS−PNð Þ=2 ð89Þ

After calculating the velocities from the momentum
Eqs. (88) and (89), couple velocity and pressure by in-
corporating Eqs. (82)–(85) into continuity Eq. (12). Sub-
sequently, we obtain an algebraic equation in terms of
pressure:

aPPP ¼ aWWPWW þ aWPW þ aEPE þ aEEPEE

þ aSSPSS þ aSPS þ aNPN þ aNNPNN

þ b ð90Þ

Where source term is

b ¼
X

uCDSin −
X

uCDSout ð91Þ

Applying boundary conditions on the continuity equa-
tion requires a little care. The coefficients of Eq. (90) are
presented in Tables 1 and 2.
In order to apply the boundary conditions in the collo-

cated grid, we go through the same way as for the stag-
gered grid. It is noteworthy that in the collocated grid,
more inner CVs are influenced by the boundary condi-
tions than in staggered grid.
Vorticity calculation: we calculate vorticity at nodal

points. According to Fig. 2, the vorticity for non-
boundary nodes in the staggered grid is calculated by
CDS:

ω ¼ ∂v
∂x

−
∂u
∂y

¼ vI; j−vI−1; j
Δx

−
ui; J−ui; J−1

Δy
ð92Þ

In the collocated grid, velocity quantity on surfaces is
calculated by averaging, and then vorticity is obtained by
CDS approximation as follows:

ω ¼ ∂v
∂x

−
∂u
∂y

¼
vI; J−1 þ vI; J

2
−
vI−1; J−1 þ vI−1; J

2
Δx

−

uI−1; J þ uI; J
2

−
uI−1; J−1 þ uI; J−1

2
Δx

ð93Þ

Results and discussions
Staggered grid independency
First, we need to examine the grid independence of the
results. Grid independence study is carried out with
FUDS, for Reynolds numbers of 10, 100, and 1000. The
v-velocity profiles at y = 1/2 and the vorticity profiles at
x = 0.9 (due to the formation of the secondary vertex in
the lower right corner of the area) are implemented to
check grid independency, though the results of the latter
are presented.
For Reynolds number of 10, the vorticity profiles at

x = 0.9 are illustrated in Fig. 3. Four different grid
systems of 10 × 10, 20 × 20, 40 × 40, and 60 × 60 are
investigated. It is clear from the figure that the grid
independency is obtained by grid 40 × 40. Figure 4
displays the vorticity profiles at x = 0.9 for grids 20 ×
20, 40 × 40, 60 × 60, and 80 × 80 at Reynolds number
of 100. Obviously, the grid independency for Re = 100
is obtained by grid 60 × 60. The vorticity profiles of
grids 40 × 40, 60 × 60, 80 × 80, 100 × 100, 120 × 120,
and 140 × 140 for Re = 1000 are presented in Fig. 5.
The mesh independency in this case is obtained by
grid 120 × 120.

Collocated grid independency
Similar to those done for the staggered grid, we use the
vorticity profiles at x = 0.9 for investigating the grid in-
dependence. The vorticity profiles at x = 0.9 and Reyn-
olds number 10 is presented for grids 20 × 20, 40 × 40,
and 60 × 60 in Fig. 6. It is clear from the figure that grid
independence is obtained by grid 40 × 40. Figure 7 pre-
sents the vorticity profiles at x = 0.9 and Reynolds num-
ber 100 for grids 40 × 40, 60 × 60, and 80 × 80. This
figure reveals that grid 60 × 60 is appropriate for inde-
pendent results at Re = 100. The vorticity profiles at
x = 0.9 with Reynolds number 1000 are depicted for
grids 60 × 60, 80 × 80, 100 × 100, 120 × 120, and 140 ×
140 in Fig. 8. It is clear from the figure that grid inde-
pendency is obtained for Re = 1000 by grid 120 × 120.
Consequently, collocated and staggered grids require

the same grid size to attain independent results at each
Reynolds number.

Table 1 Coefficients of pressure correction equation which vary
in x-direction

i 1 2 3 to n−2 n−1 n

aWW 0 0 − dW
4

0 0

aW 0 dP
2

dWþdP
2

dWþdP
2

dW
2

aE dE
2

dPþdE
2

dPþdE
2

dP
2

0

aEE 0 0 − dE
4

0 0

Table 2 Coefficients of pressure correction equation which vary
in y-direction

j 1 2 3 to n−2 n−1 n

aSS 0 0 − dS
4

0 0

aS 0 dP
2

dSþdP
2

dSþdP
2

dS
2

aN dN
2

dPþdN
2

dPþdN
2

dP
2

0

aNN 0 0 − dN
4

0 0
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Fig. 2 Staggered grid arrangement

Fig. 3 Staggered grid independency; vorticity profiles at x = 0.9 for Re = 10
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Staggered versus collocated
To compare the results of staggered and the collocated
grids and compare them with benchmark of (Ghia, Ghia,
and Shin, 1982), Figs. 9, 10, and 11 are provided. The u-
velocity profiles at x = 1/2 are shown for the three

Reynolds numbers of 10, 100, and 1000 obtained by
FUDS. The results of (Ghia et al. 1982) are presented as
benchmark for Re = 100, 1000.
The results prove that in cases of coarse grid (less

number of nodes), the difference of the results of

Fig. 4 Staggered grid independency; vorticity profiles at x = 0.9 for Re = 100

Fig. 5 Staggered grid independency; vorticity profiles at x = 0.9 for Re = 1000
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collocated grid and staggered grid is larger. Moreover,
the values obtained with staggered grid are slightly
more accurate than collocated ones by comparison
with the reference values. It should be pointed out
that the error of two implemented approaches is

higher in higher Reynolds numbers, especially in the
regions with steep velocity gradients (see Fig. 11 for u
at y = 0.17 and y = 0.85). This problem can be resolved
by implementing a TVD scheme instead of the up-
wind scheme.

Fig. 6 Collocated grid independency; vorticity profiles at x = 0.9 for Re = 10

Fig. 7 Collocated grid independency; vorticity profiles at x = 0.9 for Re = 100
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FUDS versus SUDS
To compare the results of the second order UDS,
with the results presented in the previous sections,
which are obtained by the first order USD, simula-
tions have been done with different number of nodes
at Reynolds numbers 10, 100, and 1000. Prior to
that, we studied the grid independency of the results
of SUDS. For Re = 10, grid 40 × 40 gives the inde-
pendent results identical to that of FUDS. At

Reynolds number 100, grid 50 × 50 and grid 40 × 40
give the independent results. However, with FUDS,
the mesh independency is obtained by grid 60 × 60.
Grid 80 × 80 attains independent outcomes, whereas
the grid independence is obtained in grid 120 × 120
by FUDS.
According to the aforementioned results, it can be

concluded that at low Reynolds numbers, the grid
sizes in which independency is attained are the same

Fig. 8 Collocated grid independency; vorticity profiles at x = 0.9 for Re = 1000

Fig. 9 u-velocity profiles at x = 1/2 for Re = 10
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for both FUDS and SUDS. In contrast, at the high
Reynolds numbers (Re > 100), FUDS require a finer
grid than SUDS to attain independency. Consequently,
the second order upwind scheme is an appropriate
approximation for the large convection term at high
Reynolds numbers.
Now, in order to compare the results of FUDS and

SUDS, the u-velocity profiles at x = 1/2 are illus-
trated in Figs. 12, 13, and 14 respectively for 3

Reynolds numbers of 10, 100, and 1000 obtained
with staggered grid. The results of (Ghia et al. 1982)
are also brought in Figs. 13 and 14 for comparison.
With regard to these profiles, there is no superiority

of SUDS over FUDS at low Reynolds numbers of 10.
By contrast, SUDS has significantly less error than
FUDS at Reynolds number 100 in coarse grids, and
this issue reveals the SUDS accuracy in the approxi-
mation of the momentum convection terms. Of

Fig. 10 u-velocity profiles at x = 1/2 for Re = 100

Fig. 11 u-velocity profiles at x = 1/2 for Re = 1000
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course, the errors of both schemes reduce by fining
the grid. In any case, SUDS have closer values to the
reference results. The differences in values presented
in Fig. 14 for Re = 1000 are more obvious. In this
Reynolds number, FUDS has a considerable error
even with a fine grid of 120 × 120 (noting that FUDS
results are grid independent in this number of nodes).
The SUDS results even by grid 40 × 40 have less error
than grid independent results of FUDS. Furthermore,

SUDS with grid 120 × 120 exactly coincide with the
benchmark of (Ghia et al. 1982).

Coupling algorithms of SIMPLE family
First, it must be noted that all previous results pre-
sented in this report are obtained by SIMPLE algo-
rithm. To investigate the accuracy and the
performance of the algorithms in the iterative solu-
tion process, the residual of the x-momentum

Fig. 12 FUDS versus SUDS; u-velocity profiles at x = 1/2 for Re = 10

Fig. 13 FUDS versus SUDS; u-velocity profiles at x = 1/2 for Re = 100
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equation is plotted for 3 algorithms of SIMPLE family
at Reynolds numbers of 10, 100, and 1000. The re-
sidual in terms of iteration number for Re = 10 for
SIMPLE, SIMPLEC, and SIMPLER is shown in Fig. 15.
Obviously, the SIMPLER algorithm apparently con-
verges with the number of iterations about 40% of

that of SIMPLE. Considering the fact that the number
of calculations in each iterate involved in SIMPLER is
about 30% larger than that for SIMPLE (Versteeg and
Malalasekera, 2007), the simulation time SIMPLER is
about half of the SIMPLE. Unfortunately, SIMPLER
gives devastating oscillatory solution. SIMPLEC ranks

Fig. 14 FUDS versus SUDS; u-velocity profiles at x = 1/2 for Re = 1000

Fig. 15 Performance of different coupling algorithms at Re = 10
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the second in speed but it causes oscillatory solution
and of course less than SIMPLER.
Figure 16 depicts the residual of algorithms at Re = 100.

The performance of SIMPLE and SIMPLEC algorithms
are alike and nearly smooth while SIMPLER is still faster
but substantially oscillatory. The residuals for Reynolds
number 1000 are illustrated in Fig. 17. Here, the trends

are thoroughly different from the previous graphs. From
iteration number 800 onwards, SIMPLEC algorithm
loses its performance and its convergence rate drops.
SIMPLE and SIMPLER behave fairly smooth with ac-
ceptable convergence rate. Multiplying the number of it-
erations by the number of calculations in each iterate
ranks SIMPLER as the fastest.

Fig. 16 Performance of different coupling algorithms at Re = 100

Fig. 17 Performance of different coupling algorithms at Re = 1000
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Fig. 18 Comparison of methods; u-velocity profile at x = 1/2 for Re = 1000

Fig. 19 Comparison of methods; v-velocity profile at x = 1/2 for Re = 1000
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All in all, SIMPLEC algorithm is a proper choice
for low Reynolds numbers of order of 10, SIMPLE is
suitable for Reynolds numbers of order of 102, and
SIMPLER is the fastest for moderate Reynolds num-
bers of order of 103.

Overall comparison of the methods
In order to sum up the results of FUDS versus SUDS,
and staggered grid versus collocated grid, and also to
compare with the reference, u-velocity profiles along y-
axis x = 1/2 and v-velocity profiles along x-axis at y = 1/
2 for Re = 1000 are depicted in Figs. 18 and 19,
respectively.
According to the two figures, it can be inferred that

FUDS is rather inaccurate due to numerical diffusion es-
pecially in the regions with large gradients, and it makes
the velocity profile smoother. Moreover, staggered and
collocated grids have the same results with FUDS.
Nevertheless, with SUDS, staggered grid has more accur-
acy than the collocated grid. It is remarkable that the re-
sults of staggered grid with 120 × 120 and SUDS
coincide with the results of (Ghia et al. 1982). Totally,
staggered grid with SUDS gives the most accurate results
followed by collocated grid with SUDS.

Conclusion
In the present paper, a lid-driven cavity problem is
modeled via two basically different approaches of
spatial discretization: collocated and staggered. From
CFD point of view, it is noteworthy that the semi-
discrete equations of the staggered grid and the collo-
cated grid are similar. The main difference is in the
calculation of convecting velocities and applying the
boundary conditions.
Grid independency study proves that collocated and

staggered grids require equal grid size to attain inde-
pendent results at same Reynolds numbers. By coarse
grid, the difference of the results of the collocated grid
and the staggered grid is larger. Also, the error of two
approaches is higher in higher Reynolds numbers, espe-
cially in the regions with steep gradients. At low Reyn-
olds numbers, the grid size in which independency is
attained is the same for both FUDS and SUDS. In con-
trast, at the moderate Reynolds numbers, FUDS require
a finer grid than SUDS to attain independency. There is
no superiority of SUDS over FUDS at low Reynolds
numbers whereas SUDS has considerably less error than
FUDS at moderate Reynolds numbers. By comparing dif-
ferent coupling algorithms it can be concluded that
SIMPLEC algorithm is a proper choice for low Reynolds
numbers of order of 10, SIMPLE is suitable for Reynolds
numbers of order of 102, and SIMPLER is the fastest for
moderate Reynolds numbers of order of 103.

Briefly, FUDS is rather inaccurate due to numerical
diffusion especially in the regions with large gradients,
and it makes the velocity profile smoother and stag-
gered, and collocated grids have the same results with
FUDS. Besides, staggered grid with SUDS gives the most
accurate results followed by collocated grid with SUDS.

Nomenclatures
A cross-sectional area
a coefficient in discretized equation
b source term
d pressure term coefficient
L cavity dimension
P pressure
P0 reference pressure
Re Reynolds number
u velocity in x-direction
u0 lid velocity
v velocity in x-direction
x longitudinal coordinate
y transversal coordinate

Greek letters
ρ density
μ dynamic viscosity

Subscripts
I node number in x-direction
i face number in x-direction
J node number in y-direction
j face number in y-direction

Superscripts
* dimensional parameter
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