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prediction of drawing force in deep
drawing process with respect to
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Abstract

In this research, geometric parameters were given in dimensionless form by the Buckingham pi dimensional
analysis method, and a series of dimensionless groups were found for deep drawing of the round cup. To find the
best group of dimensionless geometric parameters, three scales are evaluated by commercial FE software. After
analyzing all effective geometric parameters, a fittest relational model of dimensionless parameters is found. St12
sheet metals were used for experimental validation, which were formed at room temperature. In addition, results
and response parameters were compared in the simulation process, experimental tests, and proposed
dimensionless models. By looking at the results, it very well may be inferred that geometric qualities of a large scale
can be predicted with a small scale by utilizing the proposed dimensionless model. Comparison of the outcomes
for dimensionless models and experimental tests shows that the proposed dimensionless models have fine
precision in determining geometrical parameters and drawing force estimation. Moreover, generalizing proposed
dimensionless model was applied to ensure the estimating precision of geometric values in larger scales by smaller
scales.

Keywords: Dimensional analysis, Geometrical parameters, Dimensionless model, Π-Buckingham pi theorem, Deep
drawing

Introduction
Process performance and better control of product qual-
ity are the main area of active research for the deep
drawing process as the complex form of the sheet metal
forming process. The quality of the process is still highly
dependent on trial and error over large sizes which re-
quire elevated production costs. Finite element analysis
(FEM) is also used which can be computationally costly
and highly dependent on constitutive laws. Because of
the simplification of FEM on constitutive laws and
boundary conditions, it cannot cover the wide variety of
physical activities across the wide range of length scales.
Therefore, the experimental tests are essential for verify-
ing FEM results. Also, it is important to select the
proper process parameters to achieve flawless parts

when the process changes from small to large scale. Al-
though many studies have been done through dimen-
sional analysis, quite a few of them contain the metal
forming and articles involving both dimensional analysis
and sheet metal forming especially predicting suitable
geometrical parameters in different dimensional scales
are still pretty limited (Davey et al. 2017; Liu and Yin
2018). It should also be noted that although the scale
changes for the generalization of experimental outcomes
are not a new challenge for fluid and dynamic applica-
tions but no attention has yet been paid to its applica-
tion in metal forming (Li et al. 2019; Al-Tamimi et al.
2017).
Dimensional analysis plays an important role in evalu-

ating the process on different scales. While this method
depends on the complexity of the problem, the most sig-
nificant benefits of this method are simplicity, no need
to understand the fundamental process model, general
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dimensional model diagnosis, and process trend predic-
tion in different scales (Tan 2011). In this case, Navar-
rete et al. (2001) demonstrated that the prediction of
required force for an open die forging can be presented
with less than 15% error rate by the application of di-
mensional analysis and Π- Buckingham pi theorem. Al-
though the evaluation performed by dimensional
analysis was very helpful in predicting force, the friction
coefficient and the complexity of the geometry could
limit the process of extracting information. Pawelski
(1992) reported one of the few explanations of metal
forming dimensional analysis. In this research, Bucking-
ham pi theorem was used to define the effect of lubri-
cants on cold rolling. Jamadar and Vakharia (2016)
developed a new methodology based on dimensional
analysis to measure the localized faults, an improvement
of the computational efficiency in the nonlinear dynamic
analysis for the rolling contact bearing. A good agree-
ment between proposed theoretical models obtained by
dimensional analysis with experimental data precisely
shown the validity of the theoretical model. Finally, it
was mentioned that the dimensional analysis tool can
strongly provide great help for investigating the actual
industrial scale by the laboratory studies. Ajiboye et al.
(2010) investigated the determination of the friction role
in cold forging. They use dimensional analysis to detect
friction effects and Buckingham pi theorem for predict-
ing its value. They found that changes in friction trend
can be strongly predicted by a linear model obtained
from dimensional analysis.

Methods
Aim and design of the study
Although dimensional analysis and the Buckingham pi
theorem have been used in the fields of fluids, dynamic
analysis, friction, and bulk forming, but regarding previ-
ous studies, in the case of reducing time and costs of
manufacturing and simulation process of large dimen-
sional scales, there is no attention paid to sheet metal
forming so far. This study demonstrates that how the re-
quired geometrical parameters for designing and manu-
facturing of deep drawing process can be made in
dimensionless form by Buckingham pi theorem. More-
over, measurement of drawing force and prediction of
failure in metal forming processes need accurate and
costly instrumentations. Therefore, it can be inferred
that exceeding tensile stresses which causes fracture and
failure lead to very crucial situations in the area of sheet
metal forming. This condition can be successfully con-
trolled by the selection of accurate geometrical parame-
ters for the deep drawing process.
Considering the fact that there is no investigation on

the dimensionless parameters for sheet metal forming,
the main purpose of the current study is to suggest new

dimensionless models for reducing the manufacturing
costs by predicting drawing force as the crucial factor to
evaluate the flawless quality of the deep drawing process
in its original large size by small scale laboratory sam-
ples. For this reason, the similarity law and the Bucking-
ham π theory were used as key theories that are widely
used in dimensional fields. The geometric dimensional
groups of the deep drawing process of round cups are
assessed on different scales. Then, the best dimension-
less models to predict drawing force at the moment of
tearing are determined by stepwise regression method
and ANOVA taking into consideration the effective geo-
metric parameters. Also, the accuracy of the dimension-
less models was investigated using experimental results;
the prediction of the drawing force was presented. Fi-
nally, the precision of the proposed dimensionless
models and dimensionless analysis was also investigated
using the generalization technique. Afterward, the re-
sults of experimental tests and the proposed dimension-
less model were compared.

Buckingham pi theorem
There are several techniques to reduce the number of
dimensional variables to a smaller number of dimension-
less groups. The method provided here has been sug-
gested by Buckingham (1914) and is now called the
Buckingham pi theorem. The name pi is derived from
the mathematical notation π, i.e., the product of vari-
ables. The dimensionless groups found in the theorem
are denoted by π1, π2, π3, etc. The technique enables pi
groups to be discovered in sequential order without the
use of free exponents. The first part of the pi theorem
describes what to expect in the decrease of variables:
If a physical process satisfies the dimensional homo-

geneity and involves “n”-dimensional variables, it can be
reduced to a relation between only “m” dimensionless
variables or pi groups. The Buckingham pi theorem ex-
plains that if there are “n”-dimensional variables in a
problem, the dimensions or quantities that are related in
a homogeneous condition can be described quietly by
“m” dimensions (Buckingham 1914; Allamraju and Sri-
kanth 2017).
The most general form of physical equations among a

number of “n” physical quantities contains “n” symbols
Qi · · · Qn, one for each kind of quantity, and also, in
general, a number of ratios r′, r″, etc., so that it may be
written as Eq. (1).

f Q1;Q2;Q3………::Qn; r
0
; r″;…

� �
¼ 0 ð1Þ

It is supposed by (Buckingham 1914) that the ratios
“r” do not vary during the phenomenon. For example, if
the equation describes a property of a material system
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and involves lengths, the system shall remain geometric-
ally similar to itself during any changes in the size which
may occur. Under this condition, Eq. (1) reduces to
Eq. (2).

f Q1;Q2;Q3………::Qnð Þ ¼ 0 ð2Þ

If none of the quantities involved in the relationship
has been overlooked, the equation will give a complete
description of the relation subsisting among the quan-
tities represented in it and will be a complete equation.
The coefficients of a complete equation are dimension-
less numbers, i.e., if the quantity “Q” is measured by an
absolute system of units, the coefficients of the equation
do not depend on the sizes of the fundamental units but
only on the fixed interrelations of the units which
characterize the system and differentiate it from any
other absolute system. To illustrate what is meant by a
“complete equation,” the familiar equation is considered
as Eq. (3).

pv
θ

¼ constant ð3Þ

In which “p” is the pressure, “v” is the specific volume,
and “θ” is the absolute temperature of a mass of gas.
The constant is not dimensionless but depends, even for
a given gas, on the units adopted for measuring “p,” “v,”
and “θ”; the equation is not complete. Further investiga-
tion shows that Eq. (3) can be written as Eq. (4).

pv
Rθ

¼ N ð4Þ

In which the symbol “R” stands for a quantity charac-
teristic of each gas and differs from one to another, but
fixed for any given gas when the units of p, v, and θ are
fixed. It was recognized that “R” is a quantity that can be
measured by a unit derived from those of “p,” “v,” and
“θ.” If we do express the value of “R” in terms of a unit
thus derived, N is a dimensionless constant and does not
depend on the sizes of the units of “p,” “v,” and “θ.”
Therefore, the equation is now a “complete equation.”
Every complete physical equation has a more specific
form as Eq. (5).

X
MQb1

1 Q
b2
2 …Qbn

n ¼ 0 ð5Þ

where “M” is a dimensionless number. All the terms of
a physical equation must have the same dimensions, or
that every correct physical equation is dimensionally
homogeneous (Buckingham 1914). Equation (5) can be
divided by any term, and it takes the form of Eq. (6).

X
NQa1

1 Qa2
2 …Qan

n

þ f Q1;Q2;Q3………::Qn; r
0
; r″;…

� �

¼ 0 ð6Þ
In which “N” is a dimensionless number. Considering

the dimensional homogeneity, the exponents a1, a2, · · ·
an, of each term of Eq. (6) must be dimensionless or that
Eq. (7) as a dimensional equation is satisfied.

Qa1
1 Qa2

2 …Qan
n ¼ f Q1;Q2;Q3………::Qn; r

0
; r″;…

� �

ð7Þ
Equation (7) can be reduced to Eq. (8) by representing

“π” as a dimensionless product.

Qa1
1 Qa2

2 …Qan
n ¼ π ð8Þ

Since “π” is dimensionless, “πx” is dimensionless. Fur-
thermore, any product of the form “πan

n ” is also dimen-
sionless. Hence, π1, π2 ... πi represent all the separate
independent dimensionless products of Eq. (8) which
can be made up under Eq. (7) from the quantities Q.
Now, there are, so far as this requirement is concerned,
no restrictions on the number of terms, the values of the
coefficients, or the values of the exponents. Hence,
Eq. (5) may more simply be written as Eq. (9).

f π1;π2;π3………::πið Þ ¼ 0 ð9Þ
Because of the principle of dimensional homogeneity,

every complete physical equation of Eq. (2) which is re-
ducible to Eq. (10) can be defined by Eq. (11).

π1½ � ¼ π2½ � ¼ … ¼ πi½ �
¼ f Q1;Q2;Q3………::Qn; r

0
; r″;…

� �
ð10Þ

The second part of the theorem demonstrates how to
discover pi groups at a moment. Discovering pi groups
depends on finding the reduction factor “k” and selecting
“k” scaling variables which do not form a pi group
among themselves. Each desired pi group will be a
power product of these “k” variables. Therefore, each pi
group found is independent.
The number “k,” of separate independent arguments

of “f,” is the maximum number of independent dimen-
sionless products of Eq. (8) which can be made by com-
bining the n quantities Q1, Q2 … Qn in different ways.
The value of reduction factor “k” can be determined by
the factor “n” as the number of arbitrary fundamental
units needed as a basis for the absolute system [Q1], · ·
[Qn]. It is mentioned by (Buckingham 1914) that there is
always at least one set of “m” which may be used as fun-
damental units, the remaining (n − m) being derived
from them. So, the relationship between the “n” quan-
tities can always be described by the reduction factor “k”
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and independent π terms. The reduction factor “k”
equals the maximum number of variables that do not
form a pi group among themselves and is always less
than or equal to the number of dimensions describing
the variables
Now, each equation of Eq. (7) with a particular set of

exponents, “a” is an equation to which the dimensions
of the units [Q] are subject. But since (n − m) of the
units are derivable from the other “k” and the units are
otherwise arbitrary, it is evident that each equation of
Eq. (7) is, in reality, equivalent to one of these equations
of derivation. There are, therefore, (n − m) equations of
Eq. (7) and the number of products for Eq. (2) which ap-
pear as independent variables in Eq. (9) is presented by
Eq. (11).

k ¼ n−m ð11Þ
Furthermore, if [Q1], [Q2] · · · [Qm] are “m” of the “n”

units which might be used as fundamental, the relations
for Eq. (5) can be written as Eq. (12).

π1½ � ¼ Qa1
1 :Qb1

2 :Q
c1
3 ………:Qm1

m :Qmþ1

h i

π2½ � ¼ Qa2
1 :Qb2

2 :Q
c2
3 ………:Qm2

m :Qmþ2

h i

πn−m½ � ¼ Qan−m
1 :Qbn−m

2 :Qcn−m
3 ………:Qmn−m

m :Qmþ1

h i

ð12Þ
To make use of any one of the equations of Eq. (12)

for finding the specific fom1 of the corresponding
Eq. (12), each of the [Q]s is replaced by the known di-
mensional equivalent for it, in terms of whatever set of
“k” fundamental units (such as mass, length, time, etc.).
The resulting equation contains the “k” independent
fundamental units, and since both members are of zero
dimensions, the exponent of each unit must vanish. The
“k” independent linear equations are obtained which suf-
fice to determine the “k” exponents. It is still however
one arbitrary choice left which is sometimes convenient
to make use of it.
As in the above relations, each of them is dimension-

less and the exponents a, b, c, d... m, are defined by the
dimensions homogeneity. Lastly, as shown in Eq. (13),
the general relation for the phenomenon can be ob-
tained by specifying any of the terms as a function of the
others (Buckingham 1914; De Rosa et al. 2016).

π1 ¼ f 1 π2;π3………::πn−mð Þ
π2 ¼ f 2 π1;π3………::πn−mð Þ ð13Þ

A matrix of dimensional analysis is used to define the
exponents for determining the dimensionless model. In
this method, only length L, mass M, and time T as

fundamental dimensions are considered. The relation for
dependent variable Q1 which depends on variables {Q2,
Q3, and Q4 …Q } is considered as Eq. (14).

Qi½ � ¼ LliMmiTti i ¼ 1;…; n ð14Þ
The dimension vector for each Qi can be defined by Pi

in Eq. (15).

Pi ¼
li
mi

ti

0
@

1
A i ¼ 1;…; n ð15Þ

And the dimensional matrix is

A ¼
l1 l2 … ln
m1 m2 … mn

t1 t2 … tn

2
4

3
5 i

¼ 1;…; n ð16Þ
From the above relations, it can be concluded for Q =

(Q1, Q2, Q3 …Q ) that the number of dimensionless
quantities can be derived by Eq. (17).

kþ 1 ¼ nþ 1− rank Að Þ ð17Þ
In other words, for “k” linearly independent solution,

rank (A) = n − k and AZ = 0 which is denoted by Z1,
Z2… Zk. If a j column vector of a, is supposed to be the
dimension vector of Q, and y as “i” column vector,
Eq. (18) represents the relation for defining exponent y.
Also, it can be inferred from the reduction factor “k”
and rank (A) that the reduction factor can be described
as the maximum rank (A) that │A│ ≠ 0.

Ay ¼ −a ð18Þ
As it was mentioned before, the relation Q = (Q1, Q2,

Q3 …Q ) can be simplified by Eq. (19).

π ¼ f π1;π2………::πnð Þ ð19Þ
From Eq. (19), Eq. (20) can be considered for Q.

π ¼ QQy1
1 Q

y2
2 Q

y3
3 ……Qyn

n ð20Þ
For every dimensionless quantity πi

πi ¼ Q
Zi
1

1 Q
Zi
2

2 ……QZi
n

n i ¼ 1;……; k ð21Þ
So, determining the exponent “yi” by Eq. (18) can lead

to

u ¼ Q−y1
1 Q−y2

2 ……Q−yn
n f π1;π2………::πkð Þ ð22Þ

Dimensionless groups
Buckingham pi theorem is based on the dimensionless
groups so that dimensionless groups can be created after
determining the effective independent parameters on the
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response variable, considering the similarity law and the
principle of dimensional homogeneity. According to the
similarity law, the prototype and physical model for di-
mensional analysis should be in complete similarity
which means that all relevant dimensionless parameters
for the conditions of the process have the same corre-
sponding values for the model and the prototype. Since
the deep drawing process is considered as a quasi-static
process, the dynamic similarity was passed up in this re-
search. In this research, the prototype (small scale) and
physical model (large scale) were drawn in the same vel-
ocity (similar strain ration). So the kinematic similarity
is considered to be achievable. Therefore, it is necessary
for this research to obtain geometric similarity. To
achieve comparable results during scale changing, all
process parameters that can affect the final process qual-
ity including geometrical parameters such as blank and
punch dimensions, punch and die edge radius, drawing
depth, sheet thickness, and the gap between the punch
and die must be in the same scale. According to the
similarity law, the same material with the same mechan-
ical and thermal properties should be considered for the
small and large scales. It is mentioned in (Tan 2011;
Zare et al. 2012) that the material properties for small
and large scales should be considered equal if the kine-
matic similarity is achievable. It means that in addition
to the same ratio for velocities (kinematic similarity), the
homologous particles can lie at homologous points at
homologous times if the mechanical properties such as
density, young modulus, and tension strength are the
same for the prototype (small scale) and physical model
(large scale). On the other hand, all parameters affecting
the failure or damage of the material should be consid-
ered the same to investigate tearing in the original sam-
ple (De Rosa et al. 2016).
Finally, the relationship between the drawing force and

the effective parameters can be determined in Eq. (23).

F ¼ f D; d; t; rp; rd;U ; μ
� � ð23Þ

where “D” is the blank diameter, “d” is the punch
diameter, punch, “t” is the sheet thickness, “rp” is the
punch edge radius, “rd” is the die edge radius, “U” is the
tensile strength of sample material, and “μ” is friction
coefficient. The total number of independent and
dependent variables is n = 8 which are presented in
Table 1. Considering the reduction factor “k = n – m,” 5
dimensionless groups can be derived by the number of
main dimension m = 3. However, given that the deter-
minant of the dimensional matrix must be zero and that
the current dimensional matrix with 3 primary dimen-
sions cannot be zero, two primary dimensions must be
used to determine the number of the dimensionless
group (Tan 2011). As a result, 6 dimensionless groups
were determined.
Since the friction coefficient is generally a dimension-

less factor, then one of the dimensionless groups can be
friction coefficient which is presented in Eq. (24).

π6 ¼ μ ð24Þ

The calculation steps to describe the indices that de-
termine the first dimensionless number have been de-
fined in Eq. (25) to simplify the understanding of the
method used.

π1 ¼ FDαUβ ð25Þ

According to this relationship, the input and output
variables are written in the first step. In the second step,
the relation π1 shown in Eq. (26) in terms of the main
dimensions.

π1 ¼ MLT−2
� �

Lαð Þ ML−1T−2
� �β ð26Þ

In the third step, in view of dimensionless number, the
homogeneity shown in Eq. (27).

MLT−2
� �

Lαð Þ ML−1T−2
� �β ¼ M0L0T 0 ð27Þ

In accordance with Eq. (28), in the next step, the equa-
tion of dimensional equality is written as

Table 1 Dimensional matrix for independent and dependent
parameters

Dimension F D d t rp rd U μ

M 1 0 0 0 0 0 1 0

L 1 1 1 1 1 1 − 1 0

T − 2 0 0 0 0 0 − 2 0

Table 2 Dimensionless groups

1 π1 = F/(D2.U) π2 = t/D π3 = d/D π4 = R/D π5 = r/D F/(D2.U) = f(t/D,d/D,R/D, r/D,μ)

2 π1 = F/(d2.U) π2 = t/d π3 = D/d π4 = R/d π5 = r/d F/(d2.U) = f(t/d,D/d,R/d, r/d,μ)

3 π1 = F/(t2.U) π2 = D/t π3 = d/t π4 = R/t π5 = r/t F/(t2.U) = f(D/t,d/t,R/t, r/t,μ)

4 π1 = F/(R2.U) π2 = D/R π3 = d/R π4 = t/R π5 = r/R F/(R2.U) = f(D/R,d/R,t/R, r/R,μ)

5 π1 = F/(r2.U) π2 = D/r π3 = d/r π4 = t/r π5 = R/r F/(R2.U) = f(D/R,d/R,t/R, R/r,μ)
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1þ β ¼ 0
1þ α−β ¼ 0
−2−2β ¼ 0

ð28Þ

Finally, dimensionless number π1 which contains
drawing force is obtained by Eq. (29).

π1 ¼ F

D2U
� � ð29Þ

The dimensionless groups obtained by Buckingham pi
theorem are shown in Table 2.

Simulation
In this section, to determine the drawing force at tear
moment, the deep drawing process for the St12 carbon
steel plate with the standard number DIN 1.0374 was
simulated by a 3D model in ABAQUS commercial soft-
ware. Table 3 shows the properties of St12 sheet metal
(Fereshteh-Saniee and Montazeran 2003). The finite
element model based on the explicit solving method was
considered one-quarter of the model to reduce the com-
putational cost. Deformable shell model with a four-
node shell element was considered for sheet and the
analytical rigid shell was defined for other components.
By applying boundary conditions, the matrix and blank

Table 3 Properties of St12

Strength in tension (MPa) 350

Modulus of elasticity (GPa) 200

Yield strength (MPa) 210

Density (kg/m3) 7800

Table 4 Input and output parameters of the simulation

No. d (mm) D (mm) t (mm) R (mm) r (mm) μ F (kN)

1 40 80 0.1 6.5 5 0.1 4.625

2 120 240 0.3 19.5 15 0.1 42

3 200 400 0.5 32.5 25 0.1 112

4 40 80 0.1 6.5 5 0.05 3.95

5 120 240 0.3 19.5 15 0.05 35.5

6 200 400 0.5 32.5 25 0.05 98.7

7 40 80 0.1 6.5 5 0.2 6.24

8 120 240 0.3 19.5 15 0.2 56

9 200 400 0.5 32.5 25 0.2 156

10 33.3 66.6 0.08 5.4 4.2 0.1 4.105

11 50 100 0.12 8.1 6.3 0.1 9.235

12 75 150 0.18 12.15 9.5 0.1 37

13 33.3 66.6 0.08 5.4 4.2 0.05 3.435

14 50 100 0.12 8.1 6.3 0.05 7.728

15 75 150 0.18 12.15 9.5 0.05 31

16 33.3 66.6 0.08 5.4 4.2 0.2 5.72

17 50 100 0.12 8.1 6.3 0.2 12.87

18 75 150 0.18 12.15 9.5 0.2 51.48

19 25.6 51.2 0.06 4.15 3.23 0.1 27.745

20 38.4 76.8 0.09 6.22 4.85 0.1 80.183

21 57.6 115.2 0.13 9.34 7.27 0.1 202.261

22 25.6 51.2 0.06 4.15 3.23 0.05 25.382

23 38.4 76.8 0.09 6.22 4.85 0.05 73.354

24 57.6 115.2 0.13 9.34 7.27 0.05 534.75

25 25.6 51.2 0.06 4.15 3.23 0.2 33.07

26 38.4 76.8 0.09 6.22 4.85 0.2 95.572

27 57.6 115.2 0.13 9.34 7.27 0.2 241.08

Fig. 1 Experimental setup

Fig. 2 Precision digital thickness gauge
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holder movements were limited and the edge of the
sheet was considered to be completely constant. Also,
40% reduction in thickness as a tear criterion and fric-
tion coefficient 0.1 was considered for all conditions. In-
put parameters and drawing force at the tearing
moment are presented in Table 4.

Experimental setup
The experimental tests were carried out on 25-ton
capacity hydraulic press. The material used for ex-
periments is St12 stainless steel with standard num-
ber DIN 1.0374 which is so applicable in various
industries. The compositions (wt %) of this sheet
metal were S (< 0.04), N (< 0.007), P (< 0.04), Mn
(0.4), and C (< 0.1) (Fereshteh-Saniee and Monta-
zeran 2003). In this deep drawing mold, to save
costs and machining time, die and blank holder was
manufactured as inserted part. To measure the draw-
ing force, the 33-ton capacity load cell manufactured
by CELLTEC company was used which was fixed on
the press ram by a fixture. The indicator with
0.00005 external resolution manufactured by the
SEWHA company was used to display the load. The
linear potentiometer with a 0.5% error manufactured
by OPKON company was used to measure the

height of the drawn cup. All setup for load cell and
the linear potentiometer is shown in Fig. 1. To de-
termine the effective friction coefficient, thickness
distribution of a drawn sheet was used which was
measured by precision digital thickness gauge with
1-μm resolution and 5-μm measurement precision
manufactured by GMAG company which is shown in
Fig. 2.

Experimental design
All the effective geometrical parameters are shown in Table
5. The levels of these three scales were selected according
to our laboratory experiences. To ensure the precision of
results, each experiment was measured three times and the
mean value for the output was considered. The friction co-
efficient in experimental tests was determined by compar-
ing thickness distribution in experimental tests with
simulation. For this purpose, sheet metal thickness was
measured in eight locations concerning their distance to
the center of the sheet which is shown in Fig. 3. Then, the
effective friction coefficient on each sample was determined
by comparing the thickness in experimental and simulation
cases which is shown in Fig. 4.

Dimensionless model
All possible dimensionless combinations have been
analyzed using a developed SPSS statistical software
by regression modeling. For this propose, every
double combination in each dimensionless group has
been evaluated by analysis of variance (ANOVA). Di-
mensionless combinations, considering the correlation
coefficients R2, are given in Table 6. The correlation
coefficient is obtained by dividing the regression sum
of squares (SSR) into the total sum of squares (SST)
according to Eq. (30). Considering R2, it was deter-
mined that combination 1 has a higher correlation
coefficient than others.

Table 5 Process factors and their levels

d D t R μ

1 30 54 0.5 3 0.2

2 60 108 0.5 6 0.18

3 120 216 0.5 12 0.15

4 30 54 1 3 0.2

5 60 108 1 6 0.18

6 120 216 1 12 0.15

7 30 54 2 3 0.2

8 60 108 2 6 0.18

9 120 216 2 12 0.15

Fig. 3 Location of measure points in experimental and simulation case
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R2 ¼ SSR
SST

ð30Þ

However, it should be noted that despite the high cor-
relation coefficient for combinations 1 and 2, the friction
coefficient as an important parameter for predicting
drawing force which is considered as dimensionless par-
ameter π6 has not any role in predicting drawing force.
For this reason, to specify a precision and significant

model by considering effective dimensionless parame-
ters, the stepwise regression method was used.
The stepwise regression method evaluates all the pa-

rameters, but unlike the general regression modeling
methods, there is not any interference in the model by
insignificant factors. In other words, the participation of
the factor in the final model is ignored if there is no sig-
nificant influence on that parameter. The criterion for
adding or removing a variable at any step is usually
expressed in terms of a partial F-test. In this test, fin is
defined as the value of the F-random variable for adding
a variable to the model and fout is defined as the value of
the F-random variable for removing a variable from the
model which it must be fin ≥ fout. Stepwise regression be-
gins by forming a one-variable model using the x1
regressed variable that has the highest correlation with
the response variable “Y.” In the second step, the
remaining K-1 candidate variables are examined, using
the partial F-statistic factor which is shown in Eq. (31)
and it provided that fj ≥ fin.

F j ¼
SSR β jjβ1; β0

� �

MSE xj; x1
� � ð31Þ

In Eq. (31) MSE (xj, x1) denotes the mean square of
error for the model containing both x1 and xj. Suppose
that this procedure indicates that x2 should be added to
the model. Now, the stepwise regression algorithm de-
termines whether the variable x1 added at the first step
should be removed. This is done by calculating the F-
statistic based on Eq. (31) which is shown in Eq. (32).

F j ¼ SSR β1jβ2; β1ð Þ
MSE x1; x2ð Þ ð32Þ

If the calculated value f1 < fout, the variable x1 is re-
moved; otherwise, it is retained, and it would be
attempted to add a regressor to the model containing
both x1 and x2. In general, at each step, the set of
remaining candidate regressors is examined, and the re-
gressor with the largest partial F-statistic is entered, pro-
vided that the observed value of f exceeds fin. Then the
partial F-statistic for each regressor in the model is cal-
culated, and the regressor with the smallest observed
value of F is deleted if the observed f < fout. The proced-
ure continues until no other regressors can be added to
or removed from the model. The schematic of the step-
wise regression process is presented in Fig. 5. At long
last, in the wake of examining every one of the dimen-
sionless factors in several steps, the best-fitted model is
extracted which is composed of effective parameters.
The correlation coefficient of the acquired model is
more trustworthy which is given in ANOVA Table 7.
When the value of R2 is close to 1, it indicates that

Fig. 4 Thickness distribution in experimental and simulation cases. a
Scale 1:1. b Scale 2:1. c Scale 4:1

Table 6 Dimensional combinations with the best correlation

Combination R2 Regression equation

1 π1 = f(π2,π3) 0.9 0.0011 × π20.011 × π30.8

2 π1 = f(π2,π4) 0.9 2.126 × π2
1.366 × π4

2.795

3 π1 = f(π2,π5) 0.86 2.109 × π2
1.358 × π5

2.776

4 π1 = f(π2,π6) 0.89 0.63 × π2
1.01 × π6

0.26
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there is a strong relationship between input and out-
put variables. In analyzing the regression model, it
should be noted that the R2 coefficient increases by
adding additional variables or higher levels to the
model. Therefore, models with greater R2 may be
weak in predicting or estimating outputs for new in-
puts, despite good fit for existing data. Therefore, the
adjusted correlation coefficient R2

adj shown in
Eq. (33), which can prevent the inclusion of unneces-
sary factors, can provide more accurate analysis in
the regression model. In Eq. (33), n is the number of

experiments and p is the number of factors. When
the values of R2 and R2

adj are very different, it means
that additional variables have been added to the
model. In addition to the residuals and correlation
coefficient, another parameter that is used to measure
the suitability of the regression model is the param-
eter P value. P < α indicates the appropriateness of
the regression model, in which α is a confidence level
and is usually considered to be between 5 and 10%.
This means that an error of α% is allowed in the ex-
periment (Montgomery 2003).

Fig. 5 Schematic of the stepwise regression method

Table 7 ANOVA results for the dimensionless model by stepwise regression

Source Sum of squares Degree of freedom Mean square F value P value % contribution

Model 0.956 10 0.0956 7.468 0.008

π2 0.412 2 0.206 16.093 0.0102 32.07

π3 0.312 2 0.156 12.187 0.0145 24.28

π4 0.227 2 0.113 8.828 0.0175 17.61

π5 0.036 2 0.018 1.406 0.346 2.81

π6 0.246 2 0.123 9.6093 0.0135 19.15

Lack of fit 0.066 5 0.0132 1.031 0.495 2.05

R2 = 0.91, R2adj = 0.93, R2pred = 0.92
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R2
adj ¼ 1−

n−1
n−p

1−R2
� � ð33Þ

The correlation coefficient of the obtained model with
stepwise regression is more reliable which is given in
ANOVA Table 7. Consequently, as shown in Eq. (34),
dimensionless numbers π2, π3, π4, and π6 from group 1
remained in the regression model. The associated P
value of less than 0.05 for the model (i.e., α = 0.05 or
95% confidence level) indicates that the model terms are
statistically significant. It can be seen in Eq. (34) that di-
mensionless number π4 has been eliminated from the
final model because of its insignificant P value (P value >
0.05). Also, it is inferred from the ANOVA table that di-
mensionless number π2 is the most significant factor
that affects the dimensionless response π1 which con-
tains the tearing force. Another factor in Table 7 is the
contribution percent that is resulted by F value. Larger
values of contribution indicate that changing in the cor-
responding parameter will have a large impact on the re-
sponse variable (Montgomery 2003). In other words,
more contribution to an input parameter leads to more
effective response factor. It can be seen from Table 7
that dimensionless parameter π2 that specifies the ratio
of t/D is the most contributed and dimensionless

parameter π5 that calculates the r/D has the lowest con-
tribution to the response factor π1 which contains draw-
ing force.

π1 ¼ 0:121� π2
0:688 � π3

0:4 � π4
1:397 � π6

0:38 ð34Þ

Results and discussion
Confirmation run
According to Table 5, in order to verify the developed
model, nine confirmation experiments were performed
and the results of the experimental tests were compared
with the proposed dimensionless model. The input pa-
rameters have been selected different from those in
simulation to carefully evaluate the proposed dimension-
less model. It is inferred from Fig. 6 that the developed
dimensionless model with 8.8% mean error has good
precision in the prediction of drawing force in deep
drawing of round cups. The round drawn cups are
shown in Fig. 7 for three scales.

Analysis of dimensionless parameters
As indicated by acquired outcomes, comparison of ex-
perimental results with Buckingham pi theorem demon-
strated that the proposed dimensionless models have
high precision to estimate drawing force at tearing

Fig. 6 Tearing forces obtained from the experimental results and
the dimensionless equation

Fig. 7 Round cups. a Scale 4:1. b Scale 2:1. c Scale 1:1

Fig. 8 Effect of the dimensionless parameter on drawing force

Fig. 9 Geometrical parameters determination by the
friction coefficient
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moment without simulation and experimental tests. Ac-
cording to ANOVA results, the π2 dimensionless param-
eter, which indicates proportion t/D, can be utilized as
effective dimensionless parameters to evaluate drawing
force from small to large scale. As shown in Fig. 8, chan-
ging in drawing force in different scales requires chan-
ging in geometric proportions to produce the flawless
part. For example, when the drawing force for a flawless
part in scale 1:1 is measured, according to the similarity
law, if the blank thickness for the next scale is doubled,
the blank diameter is changed similarly for maintaining
the proportion of t/D. On the other hand, because of the
high effect of friction coefficient on drawing force, it can
be considered for determining the appropriate geometric
parameters. As can be seen in Fig. 9, the value of t/D
can be detected in three different scales by friction
coefficient.
According to similitude, in order to produce flawless

cups in different scales, scale changing that leads to
drawing force changing requires changing in geometric
ratios. For example, when the force for a flawless piece
of scale 1:1 is 9.8 kN, if the thickness of the next scale
changes from 1 to 2mm, according to the similarity law,
to maintain the ratio of thickness to the sheet diameter
and to ensure that the sheet is properly drawn, the
diameter of the blank should increase by 2 times. As
shown in Fig. 10, changing blank diameter from 108 to
150 mm, 60 to 83 mm for punch diameter, and 1 to 1.4

mm for sheet thickness leads to about 30 kN drawing
force which it concludes that it is well estimated based
on the proposed dimensionless model in comparison
with 33 kN resulted by experiments. So, it can be
expressed that for the same material in larger scales, the
value of geometric parameters and drawing force can be
estimated with good accuracy by smaller geometry based
on the proposed dimensionless model.

Generalization
In order to investigate the generalizations of proposed
dimensionless analysis and dimensionless models, the
parameter t/D was considered for generalizing by simu-
lation. The values of these parameters were selected out
of the range of experimental design which is appeared in
Table 8. The predicted values for verification in all three
scales are precisely along with the trend of graphs as
shown in Fig. 11. Likewise, as indicated by the confirm-
ation, it is possible to generalize the analysis with good
precision in each scale, to estimate drawing force and
appropriate geometric parameters.

Conclusion
The current investigation mainly involves a dimension-
less analysis based on the Buckingham pi theorem which
is developed by simulation and experimental design for
deep drawing of the round cup. The empirical models
were derived by stepwise regression to predict drawing
force and evaluation of dimensionless factors in different
geometrical scales. To derive these models, some input
and output data are used for simulation. Derived empir-
ical models were evaluated by experimental data. Finally,
in order to show the ability of the proposed models to
predict drawing force, generalization by FEM simulation

Fig. 10 Drawing force respect to geometric parameters in different scales based on the proposed dimensionless model

Table 8 Process factors for conducting verification runs

Scale t
D

1:1 0.001 0.006 0.01 0.02

2:1 0.004 0.01 0.025 0.04

4:1 0.01 0.03 0.05 0.07
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and some out of scope data was done. From the research
study, the following conclusions can be counted herein:

1- Similarity conditions and Buckingham pi theorem
have shown that various dimensionless groups, each
containing different dimensionless parameters, can
be used to predict deep drawing force.

2- The correlation coefficients of dimensionless
models for each group which were obtained by
simulation showed that there is no adequate
confidence for all the specified dimensionless on
drawing force prediction.

3- It was determined that dimensionless parameters
with more than 90% correlation coefficient can
be valid for predicting drawing force. The results
of ANOVA and the validation experiments
confirm that the proposed dimensionless model
shows good accuracy with an average error of
less than 9% in predicting drawing force for
round cups.

4- It was shown from the ANOVA results that
dimensionless parameters t/D, d/D, R/D, and friction
coefficient are majorly significant. It was also shown
that dimensionless ratio t/D is the most dominant
dimensionless parameters for estimating the drawing
force.

5- The results of the dimensionless analysis and
proposed dimensionless models have an excellent
capability for generalizing which was verified by
simulation. Therefore, it can be said that geometric
values in larger scales can be estimated with good
precision by smaller scales for the same material.

Finally, it is worth to mention that the dimensional
analysis tool applied in the present study has given a
general outline of drawing force estimation for correlat-
ing the laboratory studies on the actual industrial scale.
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