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Axisymmetric deformation in transversely
isotropic magneto-thermoelastic solid with
Green–Naghdi III due to inclined load
Iqbal Kaur* and Parveen Lata

Abstract

The axisymmetric problem in two-dimensional transversely isotropic magneto-thermoelastic (TIMT) solid due to
inclined load with Green–Naghdi (GN)-III theory and two temperature (2T) has been studied. The Laplace and
Hankel transform has been used to get the expressions of temperature distribution, displacement, and stress
components with the horizontal distance in the physical domain. The effect of Green–Naghdi theories of type I, II,
and III theories of thermoelasticity has been studied graphically on the resulting quantities. A special case for the
magneto-thermoelastic isotropic medium has also been studied.

Keywords: Transversely isotropic, Magneto-thermoelastic, Mechanical and thermal stresses, Axisymmetric
deformation

Introduction
The study of deformation in a thermoelastic medium
is one of the wide and dynamic domains of con-
tinuum dynamics. It is well known that all the
rotating large bodies have angular velocity, as well as
magnetism; therefore, the thermoelastic interactions
in a rotating medium under magnetic field are of
importance. The study of thermoelasticity is beneficial
to analyze the deformation field such as geothermal
engineering, advanced aircraft structure design, ther-
mal power plants, composite engineering, geology,
high-energy particle accelerators, and many developing
technologies.
Eubanks and Sternberg (1954) discussed the axisymmet-

ric issue of elasticity concept for a transversely isotropy
medium. Vendhan and Archer (1978) electrostatically an-
alyzed transversely isotropic (TI) finite stress-free cylin-
ders with lateral surfaces using displacement potential.
Green and Naghdi (1992, 1993) dealt with the linear and
the nonlinear theories of the thermoelastic body with and
without energy dissipation. Three new thermoelastic
theories were proposed by them, based on entropy equa-
lity. Their theories are known as GN-I, GN-II, and GN-III

theories of thermoelasticity. On linearization, type I
becomes the classical heat equation, whereas on
linearization, type II as well as type III theories predicts
the finite speed of thermal wave. Savruk (1994) discussed
the axisymmetric deformation of a TI body containing
cracks.
Tarn et al. (2009) analyzed the axisymmetric and stress

dispersal in a TI roundabout barrel-shaped body utilizing
Hamiltonian variational definition through Legendre’s
change. Liang and Wu (2012) discussed the axisymmetric
deformation of one TI cylinder with the Lure method.
Mahmoud (2012) considered the impact of relaxation
times, the rotation, and the initial stress on Rayleigh waves.
Shi et al. (2016) presented the thermomagnetoelectroelastic
field in a heterogeneous annular multi-ferric composite
plate with thermal loadings which is uniformly distributed
on the boundaries. Kumar et al. (2016a, 2016b) studied the
conflicts of thermomechanical sources in a TI homoge-
neous thermoelastic rotating medium with magnetic effect
as well as two temperature applied to the thermoelasticity
GN-III theories. Li et al. (2016) presented a set of axisym-
metric solutions of the thermoelastic field in a heteroge-
neous circular plate which could either simply reinforced
or fastened persuaded by the external thermal load.
Including these, various researchers dealt with various

theory of thermoelasticity such as Marin (Marin 1997a,
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1997b; Marin 1998; Marin 1999), Marin (Marin 2008;
Marin 1997a, 1997b), Ezzat et al. (2012), Atwa (2014),
Marin et al. (2013), Marin (2016), Marin and Baleanu
(2016), Bijarnia and Singh (2016), Sharma et al. (Sharma
et al. 2015a, 2015b; 2016; 2017), Ezzat et al. (2017), Lata
(2018), Lata et al. (2016), Marin and Öchsner (2017),
Othman and Marin (2017), Ezzat et al. (2017), Chauthale
and Khobragade (2017), Kumar et al. (2017), Lata and
Kaur (2018), Shahani and Torki (2018), Lata and Kaur
(2019a, 2019b, 2019c, 2019d), Kaur and Lata (2019a,
2019b), Bhatti and Lu (2019a, 2019b), and Marin et al.
(2019).
Despite these, very less work has been done in ther-

momechanical interactions in TIMT rotating solid with
GN-III theory, with two temperature in the axisym-
metric medium. Remembering these contemplations,
analytic expressions for the displacement components,
stress components, and temperature distribution in two-
dimensional homogeneous, TIMT rotating solids with
GN-III theories, with two temperature have been
derived.

Basic equations
The field equations with and without energy dissipation,
without body forces and heat sources for an anisotropic
thermoelastic medium following Lata and Kaur (2019d),
are:

ti j ¼ Ci jklekl − βi jT ; ð1Þ

Ki jφ;i j þ K �
i jφ

:

;i j ¼ βi jT 0€ei j þ ρCE €T : ð2Þ

and the equation of motion for a medium rotating
uniformly and Lorentz force is

ti j; j þ Fi ¼ ρf€ui þ ðΩ� ðΩ� uÞi þ ð2Ω� u
: Þig;

ð3Þ
where
Ω =Ωn, n is a unit vector signifying the direction of

the rotating axis.

Fi ¼ μ0
�
j
!� H

!
0

�
;

T ¼ φ−aijφ;ij; ð4Þ

βij ¼ Cijklαij; ð5Þ

eij ¼ 1
2

ui; j þ uj;i
� �

:i ¼ 1; 2; 3 ð6Þ

βij ¼ βiδij;Kij ¼ Kiδij;K �
ij ¼ K�

i δij; i is not summed

HereCijkl having symmetry Cijkl ¼ Cklij ¼ Cjikl ¼ Cijlk
� �

:

Method and formulation of the problem
Consider a TIMT homogeneous medium with an initial
temperature T0. We consider a cylindrical polar coord-
inate system (r, θ, z) with symmetry about the z-axis.
For a plane axisymmetric problem, v = 0, and u, w, and φ
are independent of θ. Additionally, we take

Ω ¼ 0;Ω; 0ð Þ:

and

J2 ¼ 0:

The density components J1and J3 are given as

J1 ¼ −ε0μ0H0
∂2w
∂t2

; ð7Þ

J3 ¼ ε0μ0H0
∂2u
∂t2

: ð8Þ

Using the appropriate transformation following
Slaughter (2002) on Eqs. (1)–(3) to determine the condi-
tions for TI thermoelastic solid with 2T and with and
without energy dissipation, we get

C11

 
∂2u
∂r2

þ 1
r
∂u
∂r

−
1
r2
u

!
þ C13

 
∂2w
∂r∂z

!

þ C44
∂2u
∂z2

þ C44

 
∂2w
∂r∂z

!
−β1

∂
∂r

(
φ−a1

 
∂2φ
∂r2

þ 1
r
∂φ
∂r

!
−a3

∂2φ
∂z2

)
−μ0 J3H0

¼ ρ

 
∂2u
∂t2

−Ω2uþ 2Ω
∂w
∂t

!
; ð9Þ

ðC11 þ C44Þ
 

∂2u
∂r∂z

þ 1
r
∂u
∂z

!
þ C44

 
∂2w
∂r2

þ 1
r
∂w
∂r

!
þ C33

∂2w
∂z2

−β3
∂
∂z

(
φ−a1ð∂

2φ

∂r2

þ 1
r
∂φ
∂r

!
−a3

∂2φ
∂z2

)
þ μ0 J1H0

¼ ρ

 
∂2w
∂t2

−Ω2w−2Ω
∂u
∂t

!
; ð10Þ

K1 þ K�
1
∂
∂t

� �
∂2φ
∂r2

þ 1
r
∂φ
∂r

� �
þ K3 þ K �

3
∂
∂t

� �
∂2φ
∂z2

¼ T 0
∂2

∂t2
β1

∂u
∂r

þ β3
∂w
∂z

� �
þ ρCE

∂2

∂t2
φ−a1

∂2φ
∂r2

þ 1
r
∂φ
∂r

� �
−a3

∂2φ
∂z2

� 	
:

ð11Þ

Kaur and Lata International Journal of Mechanical and Materials Engineering            (2020) 15:3 Page 2 of 9



Constitutive relations are

trr ¼ c11err þ c12eθθ þ c13ezz−β1T ;
tzr ¼ 2c44erz;

tzz ¼ c13err þ c13eθθ þ c33ezz−β3T ;
tθθ ¼ c12err þ c11eθθ þ c13ezz−β3T ;

ð12Þ

where

erz ¼ 1
2

∂u
∂z

þ ∂w
∂r

� �
;

err ¼ ∂u
∂r

;

eθθ ¼ u
r
;

ezz ¼ ∂w
∂z

;

T ¼ φ−a1
∂2φ
∂r2

þ 1
r
∂φ
∂r

� �
−a3

∂2φ
∂z2

;

β1 ¼ c11 þ c12ð Þα1 þ c13α3;
β3 ¼ 2c13α1 þ c33α3:

We consider that a primary medium is at rest. Therefore,
the preliminary and symmetry conditions are assumed as

u r; z; 0ð Þ ¼ 0 ¼ u
:
r; z; 0ð Þ;

w r; z; 0ð Þ ¼ 0 ¼ w
:
r; z; 0ð Þ;

φ r; z; 0ð Þ ¼ 0 ¼ φ
:
r; z; 0ð Þ for z≥0;−∞ < r < ∞;

u r; z; tð Þ ¼ w r; z; tð Þ ¼ φ r; z; tð Þ ¼ 0 for t > 0 when z→∞:

To simplify the solution, the following dimensionless
quantities are introduced

r
0 ¼ r

L
; z

0 ¼ z
L
; t

0 ¼ c1
L
t;u

0 ¼ ρc21
Lβ1T 0

u;w
0 ¼ ρc21

Lβ1T 0
w;

T
0 ¼ T

T 0
; t

0
zr ¼

tzr
β1T 0

; t
0
zz ¼

tzz
β1T0

;φ
0 ¼ φ

T 0
; a

0
1 ¼

a1
L2

;

a
0
3 ¼

a3
L2

; h
0 ¼ h

H0
;Ω

0 ¼ L
C1

Ω:

ð13Þ
Applying the dimensionless quantities introduced in

(13) on Eqs. (9)–(11) and subsequently suppressing the
primes and using the following Laplace and Hankel
transforms

f r; z; sð Þ ¼
Z∞
0

f r; z; tð Þe−stdt; ð14Þ

~f ξ; z; sð Þ ¼
Z ∞

0
f r; z; sð Þr Jn rξð Þdr: ð15Þ

on the resulting quantities, we obtain

−ξ2 þ δ2D2−s2δ7 þΩ2
� �

~uþ δ1Dξ−2Ωsð Þ~w
þ −ξ 1þ a1ξ

2� �þ a3ξD2
� �

~φ ¼ 0;

ð16Þ

δ1Dξ þ 2Ωsð Þ~uþ δ3D
2−δ2ξ

2−s2δ7 þΩ2
� �

~w

−
β3
β1

D 1þ ξ2a1
� �

−a3D
2


 �� �
~φ ¼ 0;

ð17Þ

−δ6s2ξ~u−
β3
β1

δ6s2D~wþ �−δ8s2 1þ ξ2a1−a3D2
� �

−ξ2 K1 þ δ4sð Þ
þD2 K 3 þ δ5sð ÞÞ~φ ¼ 0:

ð18Þ
where

δ1 ¼ c13 þ c44
c11

; δ2 ¼ c44
c11

; δ3 ¼ c33
c11

; δ4 ¼ K�
1C1

L
; δ5

¼ K �
3C1

L
; δ6 ¼ −

T 0β
2
1

ρ
; δ7 ¼ ε0μ20H

2
0

ρ
þ 1; δ8

¼ −ρCEC
2
1:

The non-trivial solution of (16)–(18) by eliminating ~u,
~w, and ~φ yields

AD6 þ BD4 þ CD2 þ E ¼ 0 ð19Þ
where

A ¼ δ2δ3ζ11−ζ9δ2ζ7;
B ¼ δ2ζ3ζ11 þ δ3ζ1ζ11 þ δ2δ3ζ10−δ2ζ7ζ10−ζ7ζ1ζ9−ζ

2
2ζ11

þζ2ζ4ζ9 þ ζ8ζ7ζ2−δ3ζ4ζ8;

C ¼ ζ1ζ3ζ11 þ δ2ζ10ζ5 þ δ3ζ3ζ10−ζ9ζ1ζ6−ζ
2
2ζ10 þ ζ2ζ6ζ8

þ ζ3ζ2ζ9−ζ3ζ8δ3−ζ4ζ8ζ5 þ 4Ω2s2ζ11;

E ¼ ζ5ζ1ζ10−ζ8ζ5ζ3 þ 4Ω2s2ζ10:

ζ1 ¼ −ξ2−s2δ7 þΩ2;

ζ2 ¼ δ1ξ;

ζ3 ¼ −ξ a1ξ
2 þ 1

� �
;

ζ4 ¼ a3ξ;

ζ5 ¼ −δ2ξ
2−s2δ7 þΩ2;

ζ6 ¼ −
β3
β1

1þ a1ξ
2� �
;

ζ7 ¼ a3
β3
β1

;

ζ8 ¼ −ξδ6s2;

ζ9 ¼ −
β3
β1

δ6s2;

ζ10 ¼ −δ8s
2 1þ a1ξ

2� �
−ξ2 K1 þ δ4sð Þ;

ζ11 ¼ K 3 þ δ5sð Þ þ δ8s2a3:

The solutions of Eq. (19) can be written as

ûðξ; z; sÞ ¼
X3

j¼1
Aje

−λ jz; ð20Þ

ŵ ξ; z; sð Þ ¼
X3

j¼1
d jAje

−λ jz; ð21Þ
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φ̂ ξ; z; sð Þ ¼
X3
j¼1

l jA je
−λ jz; ð22Þ

where Aj being arbitrary constants, ±λj represents the
roots of Eq. (19) and dj and lj are given by

d j ¼
δ2ζ11λ

4
j þ ðζ11ζ1−ζ4ζ8 þ δ2ζ10Þλ2j þ ζ1ζ10−ζ8ζ3

ðδ3ζ11−ζ7ζ9Þλ4j þ ðδ3ζ10 þ ζ5ζ11−ζ9ζ6Þλ2j þ ζ5ζ10
;

l j ¼
δ2δ3λ

4
j þ ðδ2ζ5 þ ζ1δ3−ζ

2
2Þλ2j þ ζ1ζ5 þ 4Ω2s2

ðδ3ζ11−ζ7ζ9Þλ4j þ ðδ3ζ10 þ ζ5ζ11−ζ9ζ6Þλ2j þ ζ5ζ10
;

ftzz ¼XAjðξ; sÞη je
−λ jz; ð23Þ

etrz ¼XAj ξ; sð Þμ je
−λ jz; ð24Þ

etrr ¼XAj ξ; sð ÞQje
−λ jz; ð25Þ

where

η j ¼ δ11ξ−δ3λ jd j−
β3
β1

1þ a1ξ
2� �
l j þ β3

β1
a3l jλ

2
j ; ð26Þ

μ j ¼ δ2 −λ j þ ξd j
� �

;

Qj ¼ δ10 þ 1ð Þξ−δ11λ jd j−l j 1þ a1ξ
2� �þ a3l jλ

2
j ;

i; j ¼ 1; 2; 3:

Boundary conditions
The boundary conditions when normal force and tan-
gential load are applied to the half-space (z = 0) are

tzz r; z; tð Þ ¼ −F1ψ1 rð ÞH tð Þ; ð27Þ
trz r; z; tð Þ ¼ −F2ψ2 rð ÞH tð Þ; ð28Þ
∂φ r; z; tð Þ

∂z
þ hφ r; z; tð Þ ¼ 0: ð29Þ

where ψ1(r) and ψ2(r) are the vertical and the tangen-
tial load applied on along the r-axis and

HðtÞ ¼
(

1 t > 0

0 t < 0X
Aj ξ; sð Þη j ¼ −F1ψ1 ξð Þ;X
Aj ξ; sð Þμ j ¼ −F2ψ2 ξð Þ;X

Aj ξ; sð ÞP j ¼ 0: where;P j ¼ l j −λ j þ h
� �

:

Solving Eqs. (27)–(29) with the aid of (20)–(25), we
obtain

u ¼ F1fψ1 ξð Þ
Λ

X3
j¼1

Λ1 jθ j

" #
þ F2fψ2 ξð Þ

Λ

X3
j¼1

Λ2 jθ j

" #
; ð30Þ

~w ¼ F1fψ1 ξð Þ
Λ

X3
j¼1

d jΛ1 jθ j

" #
þ F2fψ2 ξð Þ

Λ

X3
j¼1

d jΛ2 jθ j

" #
;

ð31Þ

~φ ¼ F1fψ1 ξð Þ
Λ

X3
j¼1

l jΛ1 jθ j

" #
þ F2fψ2 ξð Þ

Λ

X3
i¼1

l jΛ2 jθ j

" #
;

ð32Þ

etrr ¼ F1fψ1 ξð Þ
Λ

X3
j¼1

QjΛ1 jθ j

" #

þ F2fψ2 ξð Þ
Λ

X3
j¼1

QjΛ2 jθ j

" #
;

ð33Þ

etzr ¼ F1fψ1 ξð Þ
Λ

X3
j¼1

μ jΛ1 jθ j

" #

þ F2fψ2 ξð Þ
Λ

X3
j¼1

μ jΛ2 jθ j

" #
;

ð34Þ

ftzz ¼ F1fψ1 ξð Þ
Λ

X3
j¼1

η jΛ1 jθ j

" #

þ F2fψ2 ξð Þ
Λ

X3
j¼1

η jΛ2 jθ j

" #
;

ð35Þ

Fig. 1 Geometry of the problem
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where

Λ11 ¼ −μ2P3 þ P2μ3;

Λ12 ¼ μ1P3−P1μ3;

Λ13 ¼ −μ1P2 þ P1μ2;

Λ21 ¼ η2P3−P2η3
Λ22 ¼ −η1P3 þ P1η3
Λ23 ¼ η1P2−P1η2

Λ ¼ −η1Λ11−η2Λ12−η3Λ13; j ¼ 1; 2; 3:

Special cases
Concentrated normal force (CNF)
The CNF applied on the half-space is taken as

ψ1ðrÞ ¼
δðrÞ
2πr

;ψ2ðrÞ ¼
δðrÞ
2πr

: ð36Þ

Applying Hankel transform, we get

ψ̂1ðξÞ ¼
1

2πξ
; ψ̂2ðξÞ ¼

1
2πξ

: ð37Þ

The solution of Eqs. (30)–(35) with CNF is obtained using (37).

Uniformly distributed force (UDF)
Let a uniform force F1/constant temperature F2 be
applied over a uniform circular region of radius a.
We obtained the solution with UDF applied on the
half-space by taking

ψ1ðrÞ ¼ ψ2ðrÞ ¼
Hða−rÞ
πa2

; ð38Þ

where H(a − r) is a Heaviside function. The Hankel
transforms of ψ1(r) and ψ2(r)are given by

ψ̂1 ξð Þ ¼ ψ̂2 ξð Þ ¼ J1 ξað Þ
2πaξ

� 	
; ξ≠0: ð39Þ

The solution of Eqs. (30)–(35) with UDF is obtained
using (39).

Fig. 5 Deviations of trr with x (with CNF)

Fig. 4 Deviations of φ with x (with CNF)

Fig. 3 Deviations of w with x (with CNF)

Fig. 2 Deviations of u with x (with CNF)
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Applications
We considered an inclined load (F0/unit length) ap-
plied on a uniform circular region and its inclination
with the z-axis is θ (see Fig. 1), we have

F1 ¼ F0 cosθ and F2 ¼ F0 sinθ ð40Þ

Using Eq. (40) in Eqs. (30)–(35) and with the aid of Eqs.
(37) and (39), we obtain displacement components, stress
components, and conductive temperature with uniformly
distributed force and concentrated force on the surface of
TIMT body with and without energy dissipation.

Particular cases

a) If we take K�
ij≠0, Eq. (2) is GN-III theory, and

thus we obtain the solution of (30)–(35) for
TIMT solid with rotation and GN-III theory.

b) Equation (2) becomes GN-II theory if we take
K�

ij ¼ 0, and we obtain the solution of (30)–(35) for

TIMT solid with rotation and GN-II theory.
c) If we take Kij = 0, the equation of GN-III theory

reduces to the GN-I theory, which is identical with

the classical theory of thermoelasticity, and thus we
obtain the solution of (30)–(35) for TIMT solid
with rotation and GN-I theory.

d) If C11 ¼ C33 ¼ λþ 2μ;C12 ¼ C13 ¼ λ;C44 ¼ μ;
α1 ¼ α3 ¼ α

0
; a1 ¼ a3 ¼ a; b1 ¼ b3 ¼ b;

K1 ¼ K3 ¼ K ; K�
1 ¼ K�

3 ¼ K � , we obtain the
solution of (30)–(35) for TIMT materials with
rotation and with GN-III theory.

Inversion of the transformation
To obtain the solution to the problem in the physical domain
following Sharma et al. (2015a, 2015b), invert the transforms
in Eqs. (30)–(35) by inverting the Hankel transform using

f �ðr; z; sÞ ¼
Z∞
0

ξ~f ðξ; z; sÞ JnðξrÞdξ: ð41Þ

The integral in Eq. (41) is calculated using Romberg’s
integration through adaptive step size as defined in Press
et al. (1986).

Fig. 9 Deviations of w with x (with UDF)

Fig. 8 Deviations of u with x (with UDF)

Fig. 7 Deviations of tzz with x (with CNF)

Fig. 6 Deviations of trz with x (with CNF)
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Numerical results and discussion
For determining the theoretical results and influence
of GN-I, GN-II, and GN-III theories of thermoelasti-
city, the physical data for cobalt material has been
considered from Dhaliwal and Singh (1980) as

c11 ¼ 3:07� 1011 N m−2; c33 ¼ 3:581� 1011N m−2; c13 ¼ 1:027
�1010 N m−2; c44 ¼ 1:510� 1011 N m−2; β1 ¼ 7:04
�106N m−2 deg−1; β3 ¼ 6:90� 106N m−2 deg−1; ρ ¼ 8:836
�103kg m−3; CE ¼ 4:27� 102jkg−1 deg−1;K1 ¼ 0:690
�102W m−1 deg−1;K3 ¼ 0:690� 102W m−1 K−1;T0

¼ 298 K; H0 ¼ 1 J m−1nb−1; ε0 ¼ 8:838� 10−12 F m−1; L
¼ 1; and Ω ¼ 0:5:

Using these values, the graphical illustrations of dis-
placement components (u and w), conductive
temperature φ, normal force stress tzz, tangential stress
tzr, and radial stress trr,for a TIMT solid with GN-III
theory and with 2T due to inclined load, have been il-
lustrated. The numerical calculations have been obtained
by developing a FORTRAN program using the above
values for cobalt material.

i. The black line with a square symbol relates to
K�

ij≠0 for TIMT solid with rotation and GN-III

theory.
ii. The red line with a circle symbol relates to K �

ij ¼ 0
for TIMT solid with rotation and GN-II theory.

iii. The blue line with a triangle symbol relates to
Kij = 0 the GN theory of type I.

Case 1: Concentrated normal force
Figures 2, 3, 4, 5, 6, and 7 illustrate the deviations of u and
w, conductive temperature φ, and trr, trz, and tzz for a TIMT
medium with concentrated normal force, with rotation, and
due to inclined load. From the graph, we find that that the dis-
placement component (u) and conductive temperature φ de-
creases while stress components ( trr, trz, and tzz) and
displacement component (w) show a sharp increase and then
an oscillatory pattern with an amplitude difference.

Case II: Uniformly distributed force (UDF)
Figures 8, 9, 10, 11, 12, and 13 illustrate the deviations of
u and w, conductive temperature φ, and trr, trz, and tzz for
a TIMT medium with UDF and with rotation, and due to

Fig. 13 Deviations of tzzwith x (with UDF)

Fig. 12 Deviations of the trzwith x (with UDF)

Fig. 11 Deviations of trr with x (with UDF)

Fig. 10 Deviations of φ with x (with UDF)
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inclined load. The displacement components (u), stress
components ( trr, trz, and tzz), and temperature φ decrease
sharply and then show the small oscillatory pattern, while
the displacement component (w) first increases during the
initial range of distance near the loading surface and fol-
lows the small oscillatory pattern for the rest of the
values of distance.

Conclusions
In the above research, we conclude:

� The components of displacement, stress, and
temperature distribution for TIMT solid with
GN-III theory, with 2T with inclined load, are
calculated numerically.

� The study motivates to consider magneto-
thermoelastic materials as an inventive field of ther-
moelastic solids. The shape of curves demonstrates
the effect of various GN theories and rotation on the
body and fulfills the purpose of the study.

� The outcomes of this research are extremely
helpful in the 2-D problem with dynamic
response of inclined load in TIMT medium with
rotation which is beneficial to detect the
deformation field such as geothermal engineering,
advanced aircraft structure design, thermal power
plants, composite engineering, geology, high-
energy particle accelerators, geophysics, auditory
range, and geomagnetism. The proposed model is
significant to different problems in thermoelasti-
city and thermodynamics.

Nomenclature

Symbol Name of Symbol SI Unit Symbol Name of
Symbol

SI Unit

δij Kronecker delta, ω Frequency Hz

Cijkl Elastic
parameters,

Nm−2 βij Thermal elastic
coupling
tensor,

Nm−2K−1

τ0 Relaxation Time s Ω Angular
Velocity of the
Solid

s−1

Fi Components of
Lorentz force

N T Absolute
temperature,

K

H
!

0
Magnetic field
intensity vector

Jm−1nb−1 eij Strain tensors, Nm−2

φ conductive
temperature,

Wm−1K−1 j
! Current Density

Vector
Am−2

tij Stress tensors, Nm−2
u! Displacement

Vector
m

μ0 Magnetic
permeability

Hm−1 T0 Reference
temperature,

K

ui Components of
displacement,

m ε0 Electric
permeability

Fm−1

(Continued)

Symbol Name of Symbol SI Unit Symbol Name of
Symbol

SI Unit

ρ Medium density, Kgm−3 δ(t) Dirac’s delta
function

CE Specific heat, JKg−1K−1 Kij Materialistic
constant,

Wm−1K−1

αij Linear thermal
expansion
coefficient,

K−1 K�ij Thermal
conductivity,

Ns−2K−1

H(t) Heaviside unit
step function

F1, F2 magnitude of
applied forces

N
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