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Abstract

formulations which are in satisfying agreement.

Functionally graded material shafts are the main part of many modern rotary machines such as turbines and electric
motors. The purpose of this study is to present an analytical solution of the elastic-plastic deformation of functionally
graded material hollow rotor under a high centrifugal effect and finally determine the maximum allowed angular velocity
of a hollow functionally graded material rotating shaft. Introducing non-dimensional parameters, the equilibrium equation
has been analytically solved. The results for variable material properties are compared with the homogeneous rotor and
the case in which Young's modulus is the only variable while density and yield stress are considered to be constant. It is
shown that material variation has a considerable effect on the stress and strain components and radial displacement.
Considering variable density and yield stress causes yielding onset from inner, outer, or simultaneously from both inner
and outer rotor shaft radius in contrast to earlier researches that modulus of elasticity was the only variable. The effects of
the density on the failure of a functionally graded material elastic fully plastic in a hollow rotating shaft are investigated
for the first time in this study with regard to Tresca’s yield criterial. Numerical simulations are used to verify the derived
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Introduction

Functionally graded materials (FGM) are finding vast
applications in different rotary systems such as DC mo-
tors with a magnetic membrane and chemical resistant
hydraulic motors (Mahamood & Akinlabi, 2017), gas
turbine rotors (Bahaloo, Papadopolus, & Ghosha, 2016;
Klocke, Klink, & Veselovac, 2014; Lal, Jagtap, & Singh,
2013), and modern vehicle drive train systems (Kavipra-
kash, Kannan, Lawrence, & Regan, 2014; Lee, Kim,
Kim, & Kim, 2004; Moorthy, Mitiku, & Sridhar, 2013).
Computing different stresses and the radial displace-
ment of FGM rotors are required to determine the
maximum allowed angular velocity (Nino, Hirai, &
Watanabe, 1987). Timoshenko (Timoshenko & Good-
ier, 1970), Mendelson (Mendelson, 1968), Chakrabarty
(Chakrabarty, 2006) and Mack (Mack, 1991) analyzed a
homogenous rotor. You analyzed a rotating FGM disk
(You, You, Zhang, & Li, 2007) and Dai considered the
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magnetic properties of the FGM disk (Dai & Dai, 2017).
Fukui and Yamanaka studied elastic analysis for thick-
walled FGM tubes subjected to internal pressure (Fukui
& Yamanaka, 1991). Figueiredo studied FGM pipes (Fi-
gueiredo, Borges, & Rochinha, 2008). Tutunku and
Ozturk determined solutions for stresses in FGM pres-
sure vessels (Tutuncu & Ozturk, 2001). Jabbari (Jabbari,
Sohrabpour, & Eslami, 2002) and Ansari (AnsariSadra-
badi et al., 2017) investigated mechanical and thermal
stresses in an FGM hollow cylinder under symmetric
loads. You considered an FGM pressurized sphere with
a nonlinear variable modulus of elasticity in a radial
direction (You, Zhang, & You, 2005). Dai et al. studied
a pressurized magneto elastic FGM tube (Dai, Fu, &
Dong, 2006). Hosseini et al. analyzed the thermo-elastic
behavior of an FG rotating disk (HosseiniKordkheili &
Naghdabadi, 2006). Duc (Duc, Lee, Nguyen-Thoi, &
Thang, 2017; Duc, Thang, Dao, & Vantac, 2015), Khoa
(Khoa, Thiem, Thiem, & Duc, 2019), and El-Haina (EI-
Haina, Bakora, Bousahla, Tounsi, & Mahmoud, 2017)
considered the buckling problem in their research.
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Thom (Thom, Kien, Duc, Duc, & Tinh, 2017) analyzed
a two-dimensional analysis on an FGM plane by plane
strain theories. Eraslan (Eraslan & Akis, 2006a) gave
an analytical solution for rotating disks and tubes in
plane stress and plane strain state, and studied stress
solutions of FGM shafts and disks (Eraslan & Akis,
2006b; Eraslan & Akis, 2006c). Kargarnovin et al.
(Kargarnovin, Faghidian, & Arghavani, 2007) investi-
gated FGM circular plates with arbitrary rotational
symmetric load. Akis (Akis & Eraslan, 2007) studied a
rotating FGM shaft problem in the elastic-plastic state
of stress with a variable modulus of elasticity. Tsiatas
(Tsiatas & Babouskos, 2017) worked on torsional
FGM bar. Akis studied the elasticity solution for
thick-walled FG spherical pressure vessels with
linearly and exponentially varying properties (Akis,
2009). ZamaniNejad and Rahimi studied the elasticity
of an FGM rotating cylindrical pressure vessels
(ZamaniNejad & Rahimi, 2010). Peng and Li investi-
gated an orthotropic hollow rotating disk with a vari-
able modulus of elasticity and density (Peng & Li,
2012). Some others studied creep for FGM material
under thermal condition (Bose & Rattan, 2018;
Khanna, Gupta, & Nigam, 2017; Zharfi & Ekhteraei-
Toussi, 2018). Yildirim (Yildirim & Tutuncu, 2018),
Seraj (Seraj & Ganesan, 2018), Bahaadini (Bahaadini
& Saidi, 2018), Swaminathan (Swaminathan, Naveen-
kumar, Zenkour, & Carrera, 2015), Duc (Duc, 2013;
Duc & Cong, 2018; Duc, Homayoun, Quan, & Khoa,
2019; Duc, Nguyen, & Khoa, 2017; Duc, Tran, &
Cong, 2016), and Bouderba (Bouderba, Houari,
Tounsi, & Mahmoud, 2016) worked on rotor instabil-
ities and vibrations under different conditions. Bur-
zynski (Burzynski, Chréscielewski, Daszkiewicz, &
Witkowski, 2018) worked on a FEM method to
understand elasto-plastic behaviors of FGM shells,
and Mathew (Mathew, Natarajan, & Parieda, 2018)
considered size effects in his researches. Duc (Duc,
2016a; Duc, 2016b; Duc et al, 2015; Duc, Bich, &
Cong, 2016; Duc, Khoa, & Thiem, 2018; Duc, Kim, &
Chan, 2018; Duc, Thuy Anh, & Cong, 2014) specific-
ally studied thermal effects such as buckling, thermal
instability, and dynamic thermal loads circular sec-
tions. The authors (Torabnia, Hemati, & Aghajanib,
2019) considered the elastic behavior of a hollow
FGM rotor.

Although the previous studies are valuable, none of
them considered the plastic effects in an analytical
model. All previous jobs used a numerical method
such as FEM to solve the plastic model. In the
present work, the analysis is based on small deform-
ation theory. The shaft is assumed to be infinitely
long (plane strain). The maximum allowed angular
velocity has been defined as the angular velocity in
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which vyielding initiates based on Tresca’s criterion.
Non-dimensional parameters are introduced based on
the geometry and material parameters. Stress compo-
nents are derived using generalized Hook’s law. To
identify the stress components ordering, non-
dimensional stress components are plotted for the
special case of equal exponent parameters with the
variable radius ratio. The results show when the ex-
ponent parameters vary between - 2 and 2, hoop
stress and radial stress components are the largest
and the smallest stress components. The effect of
variation of density and yield stress is investigated on
the maximum allowed angular velocity and has a con-
siderable effect on the stress distribution and yielding
initiation and the maximum allowed angular velocity.
For the first time, density variation is considered with
variable density and radius ratio of a hollow rotor on
elastic and plastic behavior and maximum allowed an-
gular velocity are discussed (Fig. 1).

Methods/experimental

In this section, the aims and methodology of the
study presented by an explanation of the governing
equations of a hollow rotor with variable properties
through its geometry. Material properties in an FGM
may vary in any direction. Here, modulus of elasticity,
density, and vyield stress are functions of radial
dimension:

E(r) = Eo(r/b)"™, p(r) = po(r/b)" ,o¥(r)
ao(r/b)"™ (1)

The material properties modeled with the power-law
function. Different exponent parameters allow various
shapes for material variation. By formulating in the cy-
lindrical coordinate system (r, 6, z) for an infinitely long
tube which rotates about longitude axis (Timoshenko &
Goodier, 1970):

d
= (ro,)-0g = —prie* (2)

The strain and radial displacement relation is:

& =du(r)/dr,eg = u(r)/r (3)

Fig. 1 Schematic of the rotor
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Plane strain condition is due to a long tube which
causes the zero value for the longitude strain.
Manipulating stress-strain and radial displacement:

(1+v)(1-2v) ((1 ) ar Ty )’

E u(r)  du(r)
T At v <(1_V) - VT) 0z
=v(o, + 0p) (4)

oy =

Substituting (4) into (2) in elastic region:

d2
2—
res u(r) ) - )
(1 +ng
+ (1 + nﬂr(a u(r)) - Tu(’”)
_ (1 + V)(l_zv)powz b(ngfrlp)r(3+np—n5) (5)
(l—V)E()

The general reformed solution of (5) is:

—np—k -ng+k

a(7) = C,; 7)) 4 ¢r(h

) _A, @2 npne+3) (6)

A solution of (6) is simplified and taken into a non-
dimensional form to be independent of material proper-
ties. Non-dimensional quantities are presented:

F=r/bh =a/bi=u/b,a> = pyw*b*/Es
VnE2=2ng2v + v2ug? + 4-8v + 2 —dvngp + 4v2ng

k =
1-v
22 4+ v-1
A =
(4 + np) (np—ng + 2)v—np2 + (ng-6)n,-8 + 3ng

(7)

» defined as the non-dimensional rotating velocity.
Substituting radial displacement into (5):
V(Cﬁ"“ + P -A@ T Wﬂt)) i

7

= o (onE=k) L, (oE k)
(L +v)(1-2v) ] (1-) Cir 5 T Cor™ 5
~A1@* (3 + np—ng)F(2 + np—ng)
(1-v) <C17m1 + szmz_A1627<2+np—nf) +

om0 oy (=mp=k) _my (1E +K)
7T W12 (C BT )

~A1@2 (3 + my—ng ) >7e)
{le’"l m + CoF™my—A @ F () (4 npfng)}
(8)

oi stands for non-dimensional stress which is defined
in the form oi = 0i/EQ. The constants used in (8) are:

VX T
(1+v)(1-2v)

0, =

-np-k-2 -ng + k-2
my = 5 y My = ) , M3
—-ng—-k +2 -ng+k—+2
= S ey = R ©)

To obtain C; and C, in radial displacement (7), two
boundary conditions are needed. Since no pressure is
applied to the inner and outer surfaces of the rotor, the
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boundary conditions are considered as oy(r=h) = 0 &
oy(r=1) = 0. Constants C; and C, are:

. ljln,,+4_ljl—ml} . Enp+4_;l—mz]
Cr= 24140 — ——— ~,Co = “241430" — —— =
(h _j 2) (I’l "I 2)
(10)
For A, and As:
3-vn, +vng-2v+n,—-n
A2 = P £ £ d 7A3
-ng-k +vng + vk + 2v
_ 3-vn, +vnp-2v + n,—ng (1)

—2v-vnp-k + ng + vk

Tresca’s criterion is considered to determine yield
condition and allowed the angular velocity of the
shaft. As the results show, yielding is a function of
exponent parameters of material variables (ng, n,, n,).
In this paper, the results are discussed on the equality
of the exponents of material variables. According to
Fig. 3 for the state of equal exponents in the range of
-2 <m <2and 05 <k < 1, the stress components
have the order of o9 > 0, > 0,. The yield criterion is
in the form of 06-0, = oy. Rearranging into a non-
dimensional form gives:

N

ol 09g—07F
0p—07 = E_'Ofng = 007" >0 Tresca = ( g r) —ilg (12)

0 60
By substituting hoop and radial stresses in the yield’s
criterion following equation formed.
) mlAZ(E‘””P e )i"’l
6)2A17.ng FmyAs (;l4+np i );,mZ Y
— —r'
(1 —+ V)a‘ 0

OTresca =

Wl
+(3 + npy—ng)F )
(13)

Yielding occurs when above equation equals zero for
the corresponding load parameters such as angular
velocity o, yield stress gy, and modulus of elasticity E.
These parameters are rearranged and defined together
as non-dimensional loading parameter (NLP):

3}
NG

NLP in the causes of which oryesca = 0 is called the max-
imum angular velocity of the shaft. As it is shown in Fig. 4
considering variable modulus of elasticity, density, and yield
stress may cause yielding starts from the inner, outer, or sim-
ultaneously from the inner and outer surfaces of the shaft.
The plastic region grows through the radial direction by in-
creasing the angular velocity of the shaft results in raising the
plastic elastic region ratio. Hence, determining the effect of
radius ratio on stress ordonnance and then resumption of

NLP = (14)
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Fig. 2 Plastic deformations initiate from (a) the internal surface, (b) the outer surface of the rotor, and (c) both

3 3
----- Constant Density Hoop Stress ~ —— - - - - - Constant Density Hoop Stress  ——
Variable Density Longitude Stress =&= Variable Density Longitude Stress —&—
? | _ Radial Stress — ’t‘j: _ Radial Stress —o—
SN— P - SN—
i -7 = 2 _
Z - (@) h=05| % (b) 7=0.9
= _ - =
Q2 — — Q 2 —
a _ - =%
g L - g
S S
&} @)
wa v
172} _ 172} -
(5] [}
= =
n n
v vl
7] w e e e m - -
Q L) —————————————————
= 1 — = 1 —
2 S
2 coo00000 00 127
5 o-0—0—0—07° ~©° 53
£ £
A A A
- - —g — g = g —0 — 8§ — Q- —G = 8 —
5202020299532 b
0 0
\ \ ‘ \ ‘ \ M T M T T 1 T T M
0.5 0.6 0.7 0.8 0.9 1 0.9 0.92 0.94 0.96 0.98 1
Dimensionless Radial Coordinate (1/b) Dimensionless Radial Coordinate (1/b)
12 16 -
_____ Constant Density Hoop Stress ~ —— - - - - - Constant Density Hoop Stress ~ ——

Variable Density

Variable Density Longitude Stress —6— Longitude Stress —6—

Radial Stress ——o—

(d) 7=0.9

Radial Stress —e—

(¢) h=0.5

08 —

IS

04 —¢

Dimensionless Stress Components (c,)
Dimensionless Stress Components ()

5
o
%
O-o-
O—,
o0

o ‘ ‘ ‘ ‘ o ¢ ¢ ¢ % ? ¢
0.5 0.6 0.7 0.8 0.9 1 09 0.92 0.94 0.96 0.98 1
Dimensionless Radial Coordinate (1/b) Dimensionless Radial Coordinate (r/b)

Fig. 3 Effect of density and radius ratio on stress collocation for n;= 2 (a, b) and n;= - 2 (¢, d)




Torabnia et al. International Journal of Mechanical and Materials Engineering

yielding initiation for the remaining elastic region is needed.
Equilibrium equation of rotating tube (2) is independent of
the elastic-plastic behavior of the material. Using Tresca’s
yield criterion will give radial stress as follows:
o, = (00/n)7"—po7" [Pw?/(m +2)] + C (15)
To verify different conditions, it is supposed that yield-
ing will initiate from both surfaces of the tube. For the
yielding initiation from the inner radius of the shaft, the
proposed boundary condition to determine C; is

(0/(r=h) = 0). Substituting C; into radial stress and
using stress relations will result:
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o2
ny, + 2

(o) —
Gr=— <7"v—h"”) +

ng

<En” *2_gm, +2>

— —
— 0o (—na *"a> ‘U (*"pﬂ —n +2>
=— 1 -h h 7
o) " 71+ ny) + ) 7
Go [ - 26%  [—n
o, = v(@ <—2h"" +7(2 + m)) et (h "*2—?”#2))
ny ny + 2

(16)

Constants C; and C, related to the elastic region are
obtained using stress continuity condition in different
regions (ar(r = rep)elastic = Ur(r = rep)plastic) Ur(r = I)elastic =
0, r,p is the elastic-plastic border of the shaft).

(@) 14
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Fig. 4 NLP plotted in different non-dimensional elasto-plastic boundary radius for (a) different n;s, (b, ) ng = 1.3826, n, = n,, comparing Akis
results (Duc, 2016b) in different modulus of elasticity
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In the case of yielding initiation from the outer 1 . ou .
radius of the shaft, the following boundary condition & =F (05-v(om—0y)); 0¥ = E’ld K=%)z
is used to determine C; (o(r = 1) = 0). The plastic di u 1 o
stresses are: PR ((1-v—*)(23, +3v))
(21)

— 00 @ =1
—_ a_l 1_ p+2
" ong -]+ n, + 2[ e
62
(n;—0)=>0, = <7> 1-7*) + o In(r/a)
— —2
— 00 iy d )
=201 1 17"
Go na(r (1+ ny) )+n,, 2( 7 t2)

(n;—0)=>09 = % (1—72) + 0o In(r/a) + o
o, = V(ZZ (7 (2 + n,)-2) + [njcj- 2} (1_7”p+z)>
(1—0)=0, = v(a*(1°-7*) + 20, In(r/a))

(17)

In the state of yielding initiation simultaneously from
inner and outer radii of the shaft, the constants C; and
C, related to radial elastic displacement and C3 and C,
related to radial plastic displacement and also r.,; and
Fep2 should be obtained simultaneously. Six equations
are needed:

ay‘elastic (,—, — 7ep1) _ _7|elastic (7 _ 7ep1)

ﬁ’elastic (7 — 7ep1) _ ﬁ‘ plastic (,7 _ 73p1)

a1 (7 = 7n) = a1l (7 = o) (18)
5F|elastic (7 _ 7ep2) _ 67|elastic (7 _ 7ep2)

ﬁ|elastic (7 _ ?e[ﬂ) _ ﬁ‘plastic (7 _ fepz)

L ’ezﬂsm (7 = 7ezﬂ)_‘_’?rlmic (7 = 7@172) =0y

Associated flow rule for this state of stress order (Akis
& Eraslan, 2007) is &’ = -¢ and ¢ = 0. Superscripts e
and p refer to elastic and plastic states (Fig. 2).

el =& + ¢

& =g +et+e
e __ e e
=+ +¢e

(19)

The associated flow rule expresses that the total plastic
strain equals zero (¢/ = 0). Hence, total elastic and plas-
tic strains are as follows:

Ji
sT:sp—l—se:s‘;—i—sg:—u—i-

dr (20)

~H R

By knowing general stress-strain relations and using
Hook’s general law and Tresca’s yield criterion, the
stress-displacement equation becomes:

Substituting obtained plastic stresses into the above
relation and rearranging it, we have:
ARy
— — 1 o_h
di @ 21-v-22) | m, \g 717

dr 7 7 n Cx (E"p+2_7np+2)
ny,+2

(22)

A non-dimensional solution of the above equation
gives plastic radial displacement as follows:

=27 [ Goh" (n, +2) | 20%F T
(-2 +ng) \ —@Pu, i T4+ ne=ny Cy
Go(nomp + 215 + 21, + 4)F 2
+ ng(-2 + ng-ngy)

u(r)  1-v-212

r ny +2

(23)

To obtain C,, the continuity condition of radial dis-
placement through the elastic and plastic border is
considered.

s _ plastic ,_ _
u’el"”w (F="7ep) = ul (7 =T7ep) (24)
1.6
Fully Plastic Angular Speed
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Fig. 5 Qfp and Qy to the loading parameter exponent n; (h = 0.5)
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Results and discussion

Elastic results

Verification has been done by comparing results with
articles discussed on homogenous materials and prior
FGM articles which are shown on subsequent plots and
considering modulus of elasticity as the only variable
property of the material. ng = n, = n, = 0 (the
homogenous material condition) for the limit of (21)
and #; = 0 creates:

(2019) 14:16 Page 7 of 11

Q=o/\/Fo =2 (h) \/(l—v)/(l—Zv) +(3-2v) ()’

The above equation is the maximum allowed angular
velocity in a homogeneous tube (Nino et al., 1987). The
results are discussed for - 2 < n; <2 and & = 0.5 and /&
= 0.55 for v = 0.3 (Akis & Eraslan, 2007; Dai et al,,
2006). To form Tresca’s yield criterion, the stress collo-
cation must be determined. Hoop, radial, and longitude
stresses are plotted for different & = a/b ratios and

(25)
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different exponent parameters for both constant and
variable density (Fig. 3).

When n; = 2, the Hoop and longitude stress rising up
for higher r = r/b, but radial stresses have a peak in the
midrange of r. Hoop and longitude stresses have a
higher value of dimensionless stress components for
constant density in comparison with the variable density.
Another fact is in & > 0.9 all studied stresses remain
constant for different ». On the other hand, for n;, = - 2,
Hoop and longitude stresses descending, but there is no
significant change in radial stress trends. The effects of
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dimensionless components are different and the higher
values belong to variable density. These effects are iden-
tified in this study for the first time. Figure 3 reveals that
the hoop stress is in maximum and radial stress is in the
minimum value for - 2 < n; < 2 and 0.5 < h < I; hence,
the Tresca’s yield criterion is as defined before. Also,
higher / ratios make the results more linear. In previous
articles on the elastic-plastic behavior of FG rotating
tube, the only variable of the material is defined as
modulus of elasticity (Akis & Eraslan, 2007; Tsiatas &
Babouskos, 2017). Circumferential stress has a smaller

the constant and variable density in values of value when considering variable density. This trend is
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similar through a/b = 0.5 to 1 for n; = 2, but these re-
sults are reverse for n; = — 2. This phenomenon could
be explained by considering power n; The power value
sign is the reverse of material distribution through rotor
wall thickness. For instance, when power law is a posi-
tive value, material distributed at outer radius of the
rotor has greater density. So negative value of power will
reverse material distribution which will result in
different stress orders.

Plastic region

To validate the model for plastic deformations, a variable
module of elasticity material (ng = 1.3826, 1, = 1,,) consid-
ered to compare with (Akis & Eraslan, 2007). Figure 4a
and b show that the results are the same for different NLP
and rep/b. As Fig. 4a and b show, considering variable
modulus of elasticity and constant density and yield stress
limit may cause yielding initiation from an inner and outer
radius of the shaft, simultaneously. High angular velocities
create high centrifugal forces that made plastic deforma-
tions in the rotor. As shown in Fig. 4c, considering vari-
able modulus of elasticity, density, and yield stress limit
with the equal exponential rates will cause yielding from
the inner radius of the shaft (ng = n, = n, = n;and - 2 <
n; < 2). Also, the homogenous behavior of the rotating
shaft is obtained (ng = n, = n, = 0). As it is depicted in
Fig. 4c, higher plastic growth happened for higher NLPs
and higher rotational speed as expected.

Plastic growth through radial coordinate by increasing
the angular velocity of the shaft is shown in Fig. 5 for
the different exponent of parameters. Maximum elastic
and plastic velocity are also shown. In both, increasing
n; results in a reduction of non-dimensional loading par-
ameter which causes yielding at lower speeds for the
rotor. This is happening because of the lowering of the
average of the material properties in higher exponential
rates of material change. Neglecting yield and density
changes make a considerable error not only in the calcu-
lation of non-dimensional loading parameters but also in
the determination of yielding initiation point.

In Fig. 6, the elastic-plastic stresses are plotted for the
state of plastic growth. To compare obtained results,
plastic radial displacement is plotted for two conditions:
considering variable modulus elasticity as the only vari-
able of the material as Eraslan and Akis (Akis & Eraslan,
2007) (Fig. 6a) and considering variable modulus of elas-
ticity, density, and yield stress limit as discussed above
(Fig. 6b—d). Radial and hoop strains are plotted to verify
and compare results. The plotted results are similar to
the results from reference (Akis & Eraslan, 2007). Ac-
cording to Fig. 6, considering variable density and yield
stress will change elastic-plastic radial displacement sig-
nificantly. Similar to Fig. 3, the effects of the exponent
rate are presented in Fig. 6¢ and d.
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Plastic strains for the case of constant yield and dens-
ity (Fig. 7a) and equal exponent rate for density, yield,
and elastic modulus (Fig. 7b) investigated. The results
are quite different in two cases for the equivalent non-
dimensional loading parameter. Non-dimensional load-
ing parameter (Q2) calculated as 1.307 according to Fig. 5
for fully plastic behavior (Fig. 7a) and 1.14 for a yield
initiated case (Fig. 7b). The analogy between two cases
again reveals that the yield initiates from inside if
density, yield, and elastic modulus are variable. To have
a better comparison, radial displacements for two cases
(Fig. 7c and d) presented.

Finally, to get an analogy in different cases, the effect
of variable density on radial displacement for a/b = 0.5
graphed in Fig. 8. It shows that for the same elastic
modulus and yield stress exponent, lower density
exponent reveals lower rotor displacement. Which is
expected based on the authors’ experience in different
gas turbine rotor design and maintenance.

Conclusion

In the present article, elastic-plastic behavior of a rotat-
ing shaft made of FGM under high centrifugal forces is
investigated for the first time. Modulus of elasticity,
density, and vyield stress is assumed to have a power-
law function of the cylindrical coordinate system and
all parameters concluded in an analytical model which
is an improvement regarding previous jobs. The ana-
lytical equations derived based on different studies,
and non-dimensional parameters defined to create
comprehensive and analogical outcomes. The results
are compared and validated with homogenous
materials and previously published articles which

Dimensionless radial displacemrt (i7(7))

0.5 0.6 0.7 0.8 0.9 1
Dimensionless radial coordinate (#/b)

F

g. 8 Effect of variable density on radial displacement for a/b = 0.5
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considered modulus of elasticity as the only variable
of the material (Akis & Eraslan, 2007).

According to the presented research, the shaft’s defor-
mations and strength have a great dependency on the
material property definition. The results show that
neglecting the variety of density and yield stress causes a
considerable difference in stress and strain and yielding
initiation behavior may change from the inner surface of
the shaft to its outer. It is essential to put great care to
determine material properties for high-speed compo-
nents such as hollow shaft to prevent design flaws in
such sensible parts of the machine.

Due to the experience of the authors in gas turbine de-
sign industries, there is a need to have some robust for-
mulas to check the yield point of hollow shafts during
turbine maintenance. Different Rolls Royce gas turbine
series such as Trent and AVON, Siemens SGT 800, and
many other midsized turbines are using hollow shafts in
their compressor and turbine parts. This model will help
to control the yield start point for a hollow shaft mea-
sured during maintenance. This paper will pave a reli-
able way to design many high-speed rotary components.
Although this research is about FGM materials, it could
be outstretched for orthogonal and non-isotropic
materials as well. The results will help designers to get a
better perception of hollow shafts possible weaknesses
and failures to design more efficient rotary machines.

Abbreviation
FGM: Functionally graded materials
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