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Nonlinear pre and post-buckled analysis of
curved beams using differential quadrature
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Abstract

This paper studied the in-plane elastic stability including pre and post-buckling analysis of curved beams considering
the effects of shear deformations, rotary inertia, and the geometric nonlinearity due to large deformations. Firstly, the
governing nonlinear equations of motion were derived. The problem was solved performing both the static and
dynamic analysis using the numerical method of differential quadrature element method (DQEM) which is a new and
efficient numerical method for rapidly solving linear and nonlinear differential equations. Firstly, the method was
applied to the equilibrium equations, leading to a nonlinear algebraic system of equations that would be solved
utilizing an arc length strategy. Secondly, the results of the static part were employed to linearize the dynamic
differential equations of motion and their corresponding boundary and continuity conditions. Without any loss of
generality, a clamped-clamped curved beam under a concentrated load was considered to obtain the buckling loads,
natural frequencies, and mode shapes of the beam throughout the method. To validate the proposed method, the
beam was modeled using a finite element simulation. A great agreement between the results was seen that showed
the accuracy of the proposed method in predicting the pre and post-buckling behavior of the beam. The investigation
also included an examination of the curvature parameter influencing the dynamic behavior of the problem. It was
shown that the values of buckling loads were completely influenced by the curvature of the beam; also, due to the
sharp change of longitudinal stiffness after bucking, the symmetric mode shapes changed more than it was expected.

Keywords: Differential quadrature element method (DQEM), Curved beam vibration, Post-buckling, Buckling load, Arc
length method, Non-linear analysis

Introduction
Curved beams have been a noticeable element in differ-
ent applications and industries. The techniques involved
in designing and constructing them have developed into
many structural forms, such as mechanical devices,
building arches, and bridges. As a result, it is important
to have a better understanding of the dynamic stability
of the subject to external loadings for the purpose of
preventing possible accidents.
Many researches have been done in the field of stabil-

ity of beam structures. Hummer (Hummer, 2013) inves-
tigated the buckling and post-buckling of beams taking
into account both the influence of axial compressibility

and shear deformation on the basis of Reissner’s rela-
tions. Bradford et al. (Bradford, Uy, & Pai, 2002) studied
the in-plane elastic stability of arches under a central
concentrated load analytically. A systematic method for
the post-buckling analysis showing the importance of
nonlinear terms of curved beams was established by Fan
et al. (Fan et al., 2017). Addessi et al. (Addessi, Lacarbo-
nara, & Paolone, 2005) obtained the natural frequencies
and mode shapes of beams around their curved pre-
stressed post-buckling configurations.
An investigation of the nonlinear buckling behavior of cir-

cular arches was done by Jianbei et al. (Jianbei, Mario, &
David, 2014) by using the trapezoid method with Richardson
extrapolation enhancement. Pi et al. (Pi, Bradford, & Tin-Loi,
2007) investigated the analytical solutions for in-plane non-
linear elastic behavior and the stability of elastically sup-
ported shallow circular arches. Their model was subjected to
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a radial load uniformly distributed around the arch axis. A
geometrically nonlinear finite element model of a composite
curved beam was presented by Fraternali et al. (Fraternali,
Spadea, & Ascione, 2013). They considered moderately large
rotations, shear strains, as well as small axial strains.
Torabi et al. (Torabi, Afshari, & Aboutalebi, 2014)

studied the free vibration of a Timoshenko beam with
multiple cracks using DQEM. In order to check the
accuracy of the proposed method, a comparison be-
tween obtained natural frequencies and those calcu-
lated by some other authors was done. In addition,
they revealed that crack parameters influenced natural
frequencies. Huynh et al. (Huynh, Luu, & Lee, 2017)
studied the bending, buckling, and free vibration of
curved beams, having variable curvature along the
beam length by applying iso-geometric analysis. In
their research, in addition to the impact of varying
curvature, the effects of material distribution, aspect
ratio, and slenderness ratio on the behavior of beams
considering different boundary conditions were stud-
ied. Natural frequencies and buckling loads of a sim-
ply supported shallow circular arch subjected to
initial axial force were investigated by Matsunaga
(Matsunaga, 1995). In his research, the method of
power series expansion of displacement components
was applied to derive the equations. Liu et al. (Liu,
Lu, Fu, et al., 2017) studied the out-of-plane dynamic
instability of elastic shallow circular arches under an
in-plane central concentrated periodic load. They de-
rived the equations applying the Hamilton principle
by considering the effects of geometric nonlinearity,
additional concentrated weights, and damping. Pi
et al. (Pi & Bradford, 2008) studied the dynamic in-
plane buckling of a shallow pin-ended circular arch.
In their study, a central radial load was considered to
be exerted suddenly. They applied the method of con-
servation of energy as the criterion for dynamic buck-
ling and analytical solutions of dynamic buckling
loads. The first well-known governing vibration equa-
tions of preloaded, shear-deformable circular arches
were derived by Huang et al. (Huang, Nieh, & Yang,
2003). They solved the governing equations using a
static, closed-form solution, and an analytical dynamic
series solution and dynamic stiffness matrices. Kouna-
dis et al. (Kounadis, Gantes, & Bolotin, 1999) investi-
gated the nonlinear dynamic buckling of structural
systems qualitatively and quantitatively. In their study,
multi-degree freedom structures which are sensitive
to imperfection were investigated. A flexural-torsional
buckling theory for circular arches was represented by
Papangelis et al. (Papangelis & Trahair, 1986). In their
method, the nonlinear expressions were derived and
then substituted into the second variation of the total
potential to obtain the buckling equation. In a study

done by Quan et al. (Quan, Cuong, & Duc, 2019), the
nonlinear buckling and post-buckling of eccentrically
oblique stiffened sandwich functionally graded double
curved shallow shells resting on elastic foundations in
the thermal environment was investigated. In their
study, the shells were reinforced by functionally
graded eccentrically oblique stiffeners with deviation
angles. The stability of structures made of functionally
graded material (FGM) has also been investigated in
the literature (Anh, Bich, & Duc, 2015; Duc, 2014;
Duc, Khoa, Nguyen, & Duc, 2019; Duc, Nguyen, &
Khoa, 2017; Kim, Duc, Nam, & Van, 2019). In a study
done by Duc (Minh & Duc, 2019), the effect of a
central crack on the stability of a rectangular (FGM)
plate was investigated. In that study, they applied the
new third-order shear deformation plate theory
(TSDT) and the finite element method (FEM) to ob-
tain the results. Doan et al. (Doan, Van Do, Pham, &
Duc, 2019) used the phase-field method to simulate
the free vibration and buckling of cracked plates.
They validated their results by numerically investigat-
ing free vibration and buckling of the aforementioned
structure. There is a vast literature in domain
discretization techniques and methods of continuous
media; for example, see some other types in (Marin,
Baleanu, & Vlase, 2017; Marin & Craciun, 2017;
Marin & Nicaise, 2016).
In the previous studies, neglecting the rotary inertia ef-

fects, the buckling of non-shallow curved beams has
been investigated. Moreover, in many studies, the ap-
proximated perturbation method has been used. In the
present study, the pre- and post-buckling state of a gen-
erally curved beam with a radial concentrated force at
the middle point of the beam is investigated. The prob-
lem is solved by performing both the static and dynamic
analysis using the numerical method of the differential
quadrature element method. In static analysis, the solu-
tion of the nonlinear equations is obtained applying the
arc-length method. The buckling load is obtained con-
sidering the displacement of the middle point as a
known parameter of the arc length method in the static
analysis. Finally, the linearized dynamic differential equa-
tions of motion and their corresponding boundary and
continuity conditions are transformed into an eigenvalue
problem and the natural frequencies and mode shapes
are evaluated.

Materials and methods
Governing equation of motion for a curved beam
The equation of motion for a curved beam’s post-
buckled state, taking into account the effects of shear de-
formation and rotary inertia, as well as, the extension of
the neutral axis, can be written as (Jianbei et al., 2014):
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where dot means the derivative with respect to time. As
shown in Fig. 1, which represents an element of a curved
beam, W, U, and φ denote the radial and tangential dis-
placements, and the angle of rotation. Parameters M, N,
and Q show the bending moment, normal and shear
forces respectively. Moreover, A, I, γ, G, E, and k are the
cross-section area of the beam, area moment of inertia
of the cross-section, mass density per unit volume of the
beam material, shear and Young’s modulus of elasticity,
and shear factor of the cross-section, respectively.
In what follows, the equations of motion are solved by

the DQE method which is one of the efficient numerical
methods for fast solving linear and nonlinear differential
equations.

DQEM
The differential quadrature element method (DQEM) is
a new and efficient numerical method for rapidly solving
linear and nonlinear differential equations. The method
is based on the differential quadrature (DQ) method
which is an approximate method for expressing partial
derivatives of a function at a point located in the domain
of the function, as the weighted linear sum of the values
of the variable function at all the defined precision
points in the derivation direction. Equation (7) is the
mathematical representation of the DQ expansion
(Chen, 2005):

df
dx

����
x¼xi

¼
XN
j¼1

C 1ð Þ
ij f j; i; j ¼ 1; 2; 3;…;N ð7Þ

where f is the desired function, N is the number of preci-
sion points, xi is the precision associated with the ith
point of the function domain and also represents the
weighting coefficients used to find the first derivative of
the function at the ith precision point of the function
domain.
In our case study, the beam is discretized to m ele-

ments and each element itself is divided into N nodes
(see Fig. 2). These nodes are the aforementioned preci-
sion points. In order to use Eq. (7), the physical coor-
dinateθ is transformed to the natural coordinate x with
such the following relation (Chen, 2005):

θ ¼ 1−xð Þθ1 þ xθN ð8Þ

Where θ1 and θN are the angular coordinates of the
first and Nth nodes of the element respectively. Note
that x is a value in [0, 1] domain, i.e., (0 <x<1). In fact,
applying this relation, the differentiation with respect to
angular coordinate θ can be obtained using Eq. (8). Ac-
cording to Eqs. (7) and (8), there are two important

Fig 1. Displacement and load components of a schematic
curved element

Fig. 2 Schematic diagram of elements and beam discretization
using DQEM
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factors in applying the DQ method; firstly, calculation of
DQ weighting coefficients and, secondly, selection of the
precision points. In this article, the Lagrangian functions
were used to compute the weighted coefficients, and the
Gauss–Lobatto Chebyshev polynomial was used to select
the precision points. Finally, it is to be noted that to
reach overall consistency, the continuity conditions at
inter-element boundaries of two adjacent elements and
the boundary conditions of the whole beam, as well as
the governing equations on each element, must be
satisfied.
As indicated previously, the beam is discretized to m

elements and each element itself is divided into N nodes
(see Fig. 2). Assuming a harmonic excitation of ω fre-
quency for U, W, and φ in Eqs. (1–3), i.e., €U ¼ −ω2U ,
€W ¼ −ω2W , and €φ ¼ −ω2φ , then applying the DQ
discretization to the equations of motion at an interior
node mi of the element i, anybody can reach to such the
following discrete equations (Jianbei et al., 2014):
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To solve the nonlinear vibration of the post-buckled
curved beam (Eqs. (9–14)), first, the system of equations
is solved statically to determine what the equilibrium
shape is. As a result, considering small harmonic varia-
tions around the post-buckled equilibrium configuration,
the solution can be written as the sum of the equilib-
rium and harmonic parts in the following form:
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Eliminating the time-dependent terms in Eqs. (9–11),
the following equilibrium equations are obtained:
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Now, small harmonic variations are considered around
the post-buckled static equilibrium state. Substituting
Eqs. (15–20) into (9–14), and removing the nonlinear
terms, the linear dynamic equations of motion can be
obtained as

Fig 3. The curved beam under a concentrated load
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Continuity conditions must also be applied at the
interface of the beam segments. To have a better look at
the equilibrium condition and the corresponding vari-
ation, the beam under a concentrated load (P), and its
deformed centerline is shown in Fig. 3. In this figure, the
solid arc is the initial shape of the beam and the dotted
curve is the deformed shape of the centerline.
The radial and tangential displacements and the angu-

lar rotation continuity conditions at the inter-element
boundaries of two adjacent elements i and i + 1, except
for the peak of the beam, are expressed as

Wi
Ni ¼ Wiþ1

1 ; Ui
Ni ¼ Uiþ1

1 ; φi
Ni ¼ φiþ1

1 ð33Þ

Based on the action-reaction rule, to satisfy the con-
tinuity conditions at the inter-elements boundary of two
adjacent elements, the normal and shear forces and the
bending moment of the last node of segment i must be
equal to corresponding loads of the first node of seg-
ment i + 1. In fact, with reference to Eqs. (12–14), the
normal and shear forces and the bending moment con-
tinuity conditions at the inter-element boundary of two

Fig. 4 a Finite element model of the beam in an FE solver. b The element used for meshing the model

Fig. 5 The value of the concentrated buckling load versus the peak
value of the radial displacement

Table 1 Mechanical properties of the curved beam

Property Notation Value

Radius of the beam axis R 83 cm

Opening angle of the beam θ 40°

Height of the cross-section h 0.5 cm

Base of the cross-section b 2 cm

Young’s modulus E 11 GPa

Poisson’s ratio v 0.3

Density γ 7800 kg/m3
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adjacent elements i and i + 1, can be expressed, respect-
ively, as
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The continuity conditions at the peak of the arch in
the static state are

Ui
Ni ¼ Uiþ1

1 ;φi
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1 ;Wi
Ni ¼ w0; Wiþ1

1 ¼ w0

∂ui
Ni

∂S
¼ ∂uiþ1

1

∂S
;
∂φi

Ni

∂S
¼ ∂φiþ1

1

∂S
; i ¼ m

2
;
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where w0 is the radial displacement of the middle point
of the beam (see Fig. 3).

Fig. 6 The value of the concentrated buckling load versus the peak value of the radial displacement for the beam at different curvatures. a 0.2, b
0.5, c 1.2, d 2.

Fig. 7 Qualitative sketches for the first buckling mode shapes of the beam at different curvatures. a 0.5, b 1.2, c 2 respectively
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The continuity conditions at the peak for the dynamic state
are similar to Eq. (37) except for w0 which is considered to
be 0.
To make the system of equations solvable, three

boundary conditions must be considered at each end-
point of the beam. Boundary conditions for a beam
clamped at both ends in static and dynamic states are

W 1
1 ¼ 0 φ1

1 ¼ 0 U1
1 ¼ 0; ð38Þ

Wm
Ni ¼ 0 φm

Ni ¼ 0 Um
Ni ¼ 0 : ð39Þ

Noting that for a perfect circular arch without any imper-
fection, the arch only deforms under a fully symmetric mode,
so the beam is assumed to have some geometrical imperfec-
tions. In this study, the geometric imperfection functions are
represented in terms of the first modal shape of the beam
with an arbitrary amplitude of 0.001.
Applying the differential quadrature element method to

the equations of motion of the beam, as well as, the continu-
ity and boundary conditions, they are transformed into an al-
gebraic system of eigenvalue problem that must be solved in
terms of natural frequencies and mode shapes.

Formula for the buckling load
Regarding Fig. 3, if the load P is increased to a point which
makes the beam unstable (the buckling load), the beam as a
part of a detailed structure undergoes a large displacement
with a small excitation. Since this phenomenon can fail the
whole structure, predicting this force is an important part of
a design in this respect. To model the application of buckling
load, the radial displacement of the peak of the beam (w0) is
defined as the input of the arc length strategy meeting the
converge criterion; so, the buckling load (Pc) is obtained as
(Jianbei et al., 2014)
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N sin φi

N

� �þ Qi
N cos φi

N

� �
;

F2 ¼ Niþ1
1 sin φiþ1

1

� �þ Qiþ1
1 cos φiþ1

1

� �
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2
:

ð40Þ

In the static analysis, this force can be equalized to the
radial displacement in the continuity conditions at the
peak of the arch as

Ui
Ni ¼ Uiþ1

1 ;φi
Ni ¼ φiþ1

1 ;Wi
Ni ¼ Wiþ1

1

∂ui
Ni

∂S
¼ ∂uiþ1

1

∂S
;
∂φi

Ni

∂S
¼ ∂φiþ1

1

∂S
F1 ¼ Ni

N sin φi
N

� �þ Qi
N cos φi

N

� �
; F2 ¼ Niþ1

1 sin φiþ1
1

� �þ Qiþ1
1 cos φiþ1

1

� �
P ¼j F1−F2 j; i ¼ m

2

ð41Þ

Results and discussion
In this section, the results of our simulations in terms of
the buckling load and the natural frequencies are ob-
tained and interpreted.

Validation of the method by a finite element simulation
In the aforementioned sections, the formulas of buckling
load, as well as natural frequencies, have been derived
using the proposed DQEM. With the purpose of valid-
ation of the accuracy of the proposed method, the beam
is modeled in a finite element software (see Fig. 4), and
the results obtained via DQE method are compared to
those attained throughout the FE simulator. To analyze
the nonlinear buckling behavior of the beam, the 3-node
element BEAM189 was used in the FE simulation. In the
analysis, 100 elements were used to have accurate
results.

The buckling load
To ensure the validity and accuracy of the proposed
methods, as an example, a clamped-clamped beam with

Fig. 8 The values of the first three natural frequencies versus the
concentrated buckling load (F FEM; D DQEM)

Fig. 9 The first five natural frequencies classified according to the
symmetry of the mode shape (S symmetric modes, N
asymmetric modes)
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the properties listed in Table 1 and without any loss of
generality is considered.
The magnitude of the concentrated load can be calcu-

lated using Eq. (40), which is plotted versus the radial
displacement of the middle point (w0) in Fig. 5. The re-
sults are also compared to ones obtained throughout a
finite element simulator.
In this study, the results of the differential quadrature

element method are obtained using a mesh composed of
a series of four elements with 12 nodes in each element
and adopting Gauss–Lobatto Chebyshev polynomials.
As shown in Fig. 5, the results of the current nonlinear

analysis are in very good agreement with the corre-
sponding finite element results which shows the high ac-
curacy of the proposed method.
To investigate the effect of beam curvature on the

buckling load, by assuming a constant value for the
length of the beam specified in Table 1 and allowable
changing in the opening angle of it, the value of

concentrated buckling load versus the radial displace-
ment is drawn in Fig. 6.
Relative to Fig. 6, the curvature of the beam and the

buckling load are proportional to each other which
means a sufficient decrease in the curvature may prevent
the buckling phenomenon. In addition, the beams with
lower curvatures undergo buckling at a smaller peak
value of the radial displacement. In other words, they
show a lower deformation in the post-buckling state (see
qualitative Fig. 7).

The natural frequencies
Solving the aforementioned eigenvalue problem, the nat-
ural frequencies can also be obtained. To show the ac-
curacy of the results, a comparison between the DQEM
natural frequencies and those obtained by the finite
element method is done in Fig. 8 for the three lowest
natural frequencies in the pre and post-buckling ranges.

Fig. 10 The first five-mode shapes of the pre-buckled beam when a P/Pc = 0.5, b P/Pc r= 0.9

Fig. 11 The first four mode shapes of the post-buckled beam when P/Pcr = 2
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In this diagram, F and D show the FEM and DQEM re-
sults respectively.
In the above figure, it is worth noting that the agree-

ment between the results obtained with the FE and DQE
methods are very good up to the pre-buckling state;
thereafter, a deviation is observed due to a little differ-
ence between the buckling loads obtained by these two
methods. On the other hand, in the post-buckling state,
the natural frequencies are more sensitive to the pre-
stress effects, especially for the first and second natural
frequencies.
In order to study the effect of buckling on the sym-

metry of the mode shapes, in Fig. 9, the first five natural
frequencies are classified according to the symmetry of
the corresponding mode shapes. In this diagram, the let-
ters S and N denote the symmetric and asymmetric
modes respectively.
As seen from the above figure, the first, the second

and the third asymmetric modes are flexural modes,
whereas the first and the second symmetric modes
are longitudinal-flexural. The figure shows that as the
applied concentrated load increases from zero to the
buckling load, the first three asymmetric natural fre-
quencies decrease smoothly due to the reduction in
beam bending stiffness. Just after buckling occurs, a
jump in the frequencies is seen that is due to a sud-
den increase of beam stiffness at this condition. After
buckling, all the asymmetric frequencies increase with
a much smaller rate owing to the increase in the
bending stiffness caused by the change in the beam
curvature.
Regarding Fig. 9, the behavior of the symmetric

mode shapes is different. In the range under the crit-
ical buckling load, the natural frequencies of the first
symmetric mode decreases smoothly due to the re-
duction in the total stiffness; however, the second
symmetric natural frequency in which the longitudinal
stiffness is dominant with respect to the flexural stiff-
ness, increases rapidly up to the buckling value. In
this range, it crosses the third asymmetric mode
curve and therefore the mode transition phenomenon
occurs (see also about this phenomenon in ref. (Tar-
nopolskaya & De Hoog, 1999)). In the post-buckling
state, the dynamic longitudinal-induced stiffness sup-
presses the elastic flexural stiffness in both of the
symmetric natural frequencies due to the large de-
formation of the beam; so, the second symmetric fre-
quency shows a sharp decrease while the first one
completely vanishes (Figs. 10 and 11).
In order to have a better understanding of the cross-

over of the frequency curves, in Figs. 10 and 11 the
mode shapes corresponding to the pre-buckling state
and those corresponding to the post-buckling state are
shown, respectively:

Conclusion
In this study, the DQE and FE methods were imple-
mented to investigate the behavior of a curved beam in
the pre- and post-buckled state, taking into account the
effects of shear deformation, rotary inertia, the extension
of the neutral axis, the geometric nonlinearity due to the
large deformation, and the beam imperfection.
The solution of the non-linear differential equations

was performed including the static and dynamic parts.
The differential quadrature element method along with
an arc length strategy was used to solve the static part.
Utilizing the results of this part, the DQEM was used to
solve the linearized dynamic part. A clamped-clamped
beam was considered under a concentrated load; how-
ever, the method could be used for other types of load-
ings and boundary conditions by changing the boundary
conditions as well as the continuity conditions at the
point of exerting load (Eqs. (37–39)). The effect of
curvature on the buckling load was examined. In
addition, increasing the concentrated load on the top-
ology of the mode shapes and the values of the natural
frequencies of the beam were studied. The results were
validated by comparing to the corresponding same con-
ditions FEM results. It was shown that for clamped–
clamped beam, the asymmetric flexural frequencies de-
creased up to buckling and then increased smoothly
after that point. However, the longitudinal-flexural sym-
metric frequencies showed a different behavior due to
overcoming the longitudinal stiffness to the flexural one.
Before buckling, the first natural frequency decreased
smoothly while the second one experienced a sharp in-
crease. After buckling, due to a severe drop in the longi-
tudinal stiffness, the first symmetric frequency vanished,
but the second one declined considerably.
Finally, it was concluded that firstly, the buckling

phenomenon and the values of buckling loads were
completely influenced by the curvature of the beam. Sec-
ondly, due to the sharp change of longitudinal stiffness
after bucking, the symmetric mode shapes changed more
than it was expected.

Abbreviations
A: The cross-section area of the beam; b: The width of the cross-section;
E: The elastic modulus; G: The shear modulus of elasticity; h: The height of
the cross-section; I : The moment of inertia of the cross-section about the
neutral axis; i: The number of element; k: The shear factor of the cross-
section; M: The bending moment acting on an element of the curved beam;
N: The normal force acting on an element of the curved beam; P: The lateral
concentrated load; Pc: The buckling load; Q: The shear force acting on an
element of the curved beam; R: Radius of the beam axis; U: The tangential
displacement of the curved beam; v : The Poisson’s ratio; W: The radial
displacement of the curved beam; w0: The radial displacement of the peak
of the beam; γ: Mass density per unit volume; θ: Opening angle of the beam;
φ: The angle of rotation of an element of the curved beam; ω: The frequency
of the harmonic excitation

Acknowledgments
Not applicable

Zare and Asnafi International Journal of Mechanical and Materials Engineering           (2019) 14:15 Page 9 of 10



Authors’ contributions
MZ surveyed the history of the research, derived, and solved the equations
and drew the figures in corresponding software and wrote the first draft of
the article. AA interpreted the results and wrote the final abstract and
conclusion of the article. All authors read and approved the final manuscript.

Authors’ information
M. Zare is an alumni of MSc. of mechanical engineering at the Shahid
Chamran University of Ahvaz, Ahvaz, Iran. A. Asnafi is an associate professor
of mechanical engineering at Shiraz University, Shiraz Iran.

Funding
This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Mechanical Engineering, Shahid Chamran University, Ahvaz
61355, Iran. 2Hydro-Aeronautical Research Center, Shiraz University, Shiraz
71348-51154, Iran.

Received: 6 October 2019 Accepted: 27 November 2019

References
Addessi, D., Lacarbonara, W., & Paolone, A. (2005). On the linear normal modes of

planar pre-stressed. Journal of Sound and Vibration, 284, 1075–1097.
Anh, V. T. T., Bich, D. H., & Duc, N. D. (2015). Nonlinear stability analysis of thin

FGM annular spherical shells on elastic foundations under external pressure
and thermal loads. European Journal of Mechanics - A/Solids, 50, 28–38.

Bradford, M. A., Uy, B., & Pai, Y. L. (2002). In-plane elastic stability of arches under
a central concentrated load. Journal of Engineering Mechanics, 128, 710–719.

Chen, C. N. (2005). DQEM analysis of in-plane vibration of curved beam
structures. Advances in Engineering Software, 36, 412–424.

Doan, D. H., Van Do, T., Pham, P. M., & Duc, N. D. (2019). Validation simulation for
free vibration and buckling of cracked Mindlin plates using phase-field
method. Mechanics of Advanced Materials and Structures, 26, 1018–1027.

Duc, N. D. (2014). Nonlinear static and dynamic stability of functionally graded
plates and shells. Hanoi: Vietnam National University Press.

Duc, N. D., Khoa, N. D., Nguyen, P. D., & Duc, N. D. (2019). An analytical solution
for nonlinear dynamic response and vibration of FG-CNT reinforced
nanocomposite elliptical cylindrical shells resting on elastic foundations.
ZAMM-Journal of Applied Mathematics and Mechanics, 1–20.

Duc, N. D., Nguyen, P. D., & Khoa, N. D. (2017). Nonlinear dynamic analysis and
vibration of eccentrically stiffened S-FGM elliptical cylindrical shells
surrounded on elastic foundations in thermal environments. Thin-Walled
Structures, 117, 178–189.

Fan, Z., Wu, J., Ma, Q., Liu, Y., Su, Y., & Hwang, K. C. (2017). Post-Buckling Analysis
of Curved Beams foundations. Journal of Applied Mechanics, 84, 1–15.

Fraternali, F., Spadea, S., & Ascione, L. (2013). Buckling behavior of curved
composite beams with different elastic response in tension and
compression. Composite Structures, 100, 280–289.

Huang, C. S., Nieh, K. Y., & Yang, M. C. (2003). In-plane free vibration and stability
of loaded and shear-deformable circular arches. International Journal of Solids
and Structures, 40, 5865–5886.

Hummer, A. (2013). Exact solutions for the buckling and postbuckling of shear-
deformable beams. Acta Mechanica, 224, 1493–1525.

Huynh, T. A., Luu, A. T., & Lee, J. (2017). Bending, buckling and free vibration
analyses of functionally graded curved beams with variable curvatures using
isogeometric approach. Meccanica, 1–20.

Jianbei, Z., Mario, M. A., & David, C. K. (2014). In-plane nonlinear buckling of
circular arches including shear deformations. Archive of Applied
Mechanics, 84, 1841–1860.

Kim, S. E., Duc, N. D., Nam, V. H., & Van, N. (2019). Nonlinear vibration and
dynamic buckling of eccentrically oblique stiffened FGM plates resting

on elastic foundations in thermal environment. Thin-Walled Structures,
142, 287–296.

Kounadis, A. N., Gantes, C. J., & Bolotin, V. V. (1999). Dynamic buckling loads of
autonomous potential systems based on the geometry of the energy
surface. International Journal of Engineering Science, 37, 1611–1628.

Liu, A., Lu, H., Fu, J., et al. (2017). Analytical and experimental studies on out-of-
plane dynamic instability of shallow circular arch based on parametric
resonance. Nonlinear Dynamics, 87, 87–677.

Marin, M., & Nicaise, S. (2016). Existence and stability results for thermoelastic
dipolar bodies with double porosity. Continuum Mechanics and
Thermodynamics, 28(6), 1645–1657.

Marin, M., Baleanu, D., & Vlase, S. (2017). Effect of microtemperatures for micropolar
thermoelastic bodies. Structural Engineering and Mechanics, 61(3), 381–387.

Marin, M., & Craciun, E. M. (2017). Uniqueness results for a boundary value
problem in dipolar thermoelasticity to model composite materials.
Composites Part B: Engineering, 126, 27–37.

Matsunaga, H. (1995). In-plane vibration and stability of shallow circular
arches subjected to axial forces. International Journal of Solids and
Structures, 13, 469–482.

Minh, P. P., & Duc, N. D. (2019). The effect of cracks on the stability of the
functionally graded plates with variable-thickness using HSDT and phase-
field theory. Composites Part B: Engineering, 175, 1–9.

Papangelis, J. P., & Trahair, N. S. (1986). Flexural-torsional buckling of arches.
Journal of Structural Engineering, 112, 889–906.

Pi, Y. L., & Bradford, M. A. (2008). Dynamic buckling of shallow pin-ended arches
under a sudden central concentrated load. Journal of Sound and Vibration,
317, 898–917.

Pi, Y. L., Bradford, M. A., & Tin-Loi, F. (2007). Nonlinear analysis and buckling of
elastically supported circular shallow arches. International Journal of Solids
and Structures, 44, 2401–2425.

Quan, T. Q., Cuong, N. H., & Duc, N. D. (2019). Nonlinear buckling and post-
buckling of eccentrically oblique stiffened sandwich functionally graded
double curved shallow shells. Aerospace Science and Technology, 90, 169–180.

Tarnopolskaya, T., & De Hoog, F. R. (1999). Low-frequency mode transition in
the free in-plane vibration of curved beams. Journal of Sound and
Vibration, 228, 69–90.

Torabi, K., Afshari, H., & Aboutalebi, F. H. (2014). A DQEM for transverse vibration
analysis of multiple cracked non-uniform Timoshenko beams with general
boundary conditions. Computers & Mathematics with Applications, 67, 527–541.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Zare and Asnafi International Journal of Mechanical and Materials Engineering           (2019) 14:15 Page 10 of 10


	Abstract
	Introduction
	Materials and methods
	Governing equation of motion for a curved beam
	DQEM
	Formula for the buckling load

	Results and discussion
	Validation of the method by a finite element simulation
	The buckling load
	The natural frequencies

	Conclusion
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

