
ORIGINAL PAPER Open Access

Memory-dependent derivative approach on
magneto-thermoelastic transversely
isotropic medium with two temperatures
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Abstract

The aim of the present investigation is to examine the memory-dependent derivatives (MDD) in 2D transversely
isotropic homogeneous magneto thermoelastic medium with two temperatures. The problem is solved using
Laplace transforms and Fourier transform technique. In order to estimate the nature of the displacements, stresses
and temperature distributions in the physical domain, an efficient approximate numerical inverse Fourier and
Laplace transform technique is adopted. The distribution of displacements, temperature and stresses in the
homogeneous medium in the context of generalized thermoelasticity using LS (Lord-Shulman) theory is discussed
and obtained in analytical form. The effect of memory-dependent derivatives is represented graphically.
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Introduction
Magneto-thermoelasticity deals with the relations of the
magnetic field, strain and temperature. It has wide appli-
cations such as geophysics, examining the effects of the
earth's magnetic field on seismic waves, emission of elec-
tromagnetic radiations from nuclear devices and damp-
ing of acoustic waves in a magnetic field. In recent years,
inspired by the successful applications of fractional cal-
culus in diverse areas of engineering and physics, gener-
alized thermoelasticity (GTE) models have been further
comprehensive into temporal fractional ones to express
memory dependence in heat conductive sense.
The MDD is defined in an integral form of a common

derivative with a kernel function. The kernels in physical
laws are important in many models that describe phys-
ical phenomena including the memory effect. Wang and
Li (2011) introduced the concept of a MDD. Yu et al.
(2014) introduced the MDD as an alternative of

fractional calculus into the rate of the heat flux in the
Lord-Shulman (LS) theory of generalized thermoelasti-
city to represent memory dependence and recognized as
a memory-dependent LS model. This innovative model
might be useful to the fractional models owing to the
following arguments. First, the new model is unique in
its form, while the fractional-order models have different
modifications (Riemann-Liouville, Caputo and other
models). Second, the physical meaning of the new model
is clearer due to the essence of the MDD definition.
Third, the new model is depicted by integer-order differ-
entials and integrals, which is more convenient in nu-
merical calculation as compared to the fractional
models. Finally, the kernel function and time delay of
the MDD can be arbitrarily chosen; thus, the model is
more flexible in applications than the fractional models,
in which the significant variable is the fractional-order
parameter (2016). Ezzat et al. (2014, 2015, 2016) dis-
cussed some solutions of one-dimensional problems ob-
tained with the use of the memory-dependent LS model
of generalized thermoelasticity.
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Ezzat et al. (2016) discussed a generalized model of
two-temperature thermoelasticity theory with time delay
and Kernel function and Taylor theorem with memory-
dependent derivatives involving two temperatures. Ezzat
and El-Bary (2017) applied the magneto-thermoelastic
model to a one-dimensional thermal shock problem of
functionally graded half space based on the MDD. Ezzat
et al. (2017) proposed a mathematical model of electro-
thermoelasticity for heat conduction with a MDD.
Aldawody et al. (2018) proposed a new mathematical
model of generalized magneto-thermo-viscoelasticity
theories with MDD of dual-phase-lag heat conduction
law. Despite this, several researchers worked on different
theory of thermoelasticity such as Marin (1995, 2010),
Mahmoud (2012), Riaz et al. (2019), Marin et al. (2013,
2016), Kumar and Chawla (2013), Sharma and Marin
(2014), Kumar and Devi (2016), Bijarnia and Singh
(2016), Othman et al. (2017), Ezzat and El-Barrry (2017),
Bhatti et al. (2019a, b, 2020), Youssef (2013, 2016), Lata
et al. (2016), Othman and Marin (2017), Lata and Kaur
(2019c, d, e) and Zhang et al. (2020).
In spite of these, not much work has been carried out

in memory-dependent derivative approach for trans-
versely isotropic magneto-thermoelastic medium with
two temperatures. In this article, the memory-dependent
derivatives (MDD) theory is revisited and it is adopted
to analyse the effect of MDD in a homogeneous trans-
versely isotropic magneto-thermoelastic solid. The prob-
lem is solved using Laplace transforms and Fourier
transform technique. The components of displacement,
conductive temperature and stress components in the
homogeneous medium in the context of generalized
thermoelasticity using LS (Lord-Shulman) theory is dis-
cussed and obtained in analytical form. The effect of
memory-dependent derivatives is represented
graphically.

Basic equations
Following Kumar et al. (2016), the simplified Maxwell’s
linear equation of electrodynamics for a slowly moving
and perfectly conducting elastic solid are

curl h
!¼ j

!þ ε0
∂ E
!
∂t

; ð1Þ

curl E
!¼ − μ0

∂ h
!
∂t

; ð2Þ

E
!¼ − μ0

∂ u!
∂t

þ H
!

0

� �
; ð3Þ

div h
!¼ 0: ð4Þ

Maxwell stress components following Kumar et al.
(2016) are given by

Tij ¼ μ0 Hihj þ H jhi −Hkhkδij
� �

: ð5Þ
Equation of motion for a transversely isotropic ther-

moelastic medium and taking into account Lorentz force

tij; j þ Fi ¼ ρ€ui; ð6Þ
where Fi ¼ μ0ð j

!� H
!

0Þi are the components of Lorentz
force. The constitutive relations for a transversely iso-
tropic thermoelastic medium are given by

tij ¼ Cijklekl − βijT : ð7Þ
and

βij ¼ Cijklαij; ð8Þ

eij ¼ 1
2

ui; j þ uj;i
� �

; i; j ¼ 1; 2; 3: ð9Þ

T ¼ φ − aijφ;ij; ð10Þ
αij = αiδij, βij = βiδij, Kij = Kiδij, i is not summed.
Here, Cijkl(Cijkl =Cklij =Cjikl =Cijlk) are elastic parame-

ters and having symmetry (Cijkl =Cklij =Cjikl = Cijlk). The
basis of these symmetries of Cijkl is due to the following:

i. The stress tensor is symmetric, which is only
possible if (Cijkl = Cjikl)

ii. If a strain energy density exists for the material, the
elastic stiffness tensor must satisfy Cijkl = Cklij

iii. From stress tensor and elastic stiffness tensor,
symmetries infer (Cijkl = Cijlk) and Cijkl = Cklij =
Cjikl = Cijlk

Following Bachher (2019), heat conduction equation
for an anisotropic media is given by

Kijφ;ij ¼ 1þ χDχ
� �

ρCEṪ þ βijT 0ėijÞ;
�

ð11Þ

For the differentiable function f(t), Wang and Li
(2011) introduced the first-order MDD with respect to
the time delay χ > 0 for a fixed time t:

Dχ f tð Þ ¼ 1
χ

Z t

t − χ
K t − ξð Þ f 0

ξð Þdξ; ð12Þ

The choice of the kernel function K(t − ξ) and the
time delay parameter χ is determined by the material
properties. The kernel function K(t − ξ) is differentiable
with respect to the variables t and ξ. The motivation for
such a new definition is that it provides more insight
into the memory effect (the instantaneous change rate
depends on the past state) and also better physical
meaning, which might be superior to the fractional
models. This kind of the definition can reflect the mem-
ory effect on the delay interval [t − χ, t], which varies
with time. They also suggested that the kernel form K(t
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− ξ) can also be chosen freely, e.g. as 1, ξ − t + 1, [(ξ −
t)/χ + 1]2 and [(ξ − t)/χ + 1]1/4. The kernel function can
be understood as the degree of the past effect on the
present. Therefore, the forms [(ξ − t)/χ + 1]2 and [(ξ −
t)/χ + 1]1/4 may be more practical because they are
monotonic functions: K(t − ξ) = 0 for the past time t − χ
and K(t − ξ) = 1 for the present time t, i.e. it is easily
concluded that the kernel function K(t − ξ) is a mono-
tonic function increasing from zero to unity with time.
The right side of the MDD definition given above can be
understood as a mean value of f (ξ) on the past interval
[t − χ, t] with different weights. Generally, from the
viewpoint of applications, the function K(t − ξ) should
satisfy the inequality 0 ≤ K(t − ξ) < 1 for ξ ∈ [t − χ, t].
Therefore, the magnitude of the MDD Dχ f(t) is usually
smaller than that of the common derivative f (t). It can
also be noted that the common derivative d/dt is the
limit of Dχ as κ → 0. Following Ezzat et al. (2014, 2015,
2016), the kernel function K(t − ξ) is taken here in the
form

K t − ξð Þ ¼ 1 −
2b
χ

t − ξð Þ a
2

χ2
t − ξð Þ2

¼
1

1þ ξ − tð Þ=χ
ξ − t þ 1

1þ ξ − tð Þ=χ½ �2

8>><>>:
a ¼ 0; b ¼ 0

a ¼ 0; b ¼ 1=2
a ¼ 0; b ¼ 1=χ
a ¼ 1; b ¼ 1

ð13Þ

where a and b are constants. It should be also men-
tioned that the kernel in the fractional sense is singular,
while that in the MDD model is non-singular. The ker-
nel can be now simply considered a memory manager.
The comma is further used to indicate the derivative
with respect to the space variable, and the superimposed
dot represents the time derivative.

Method and solution of the problem
We consider a homogeneous transversely isotropic
magneto-thermoelastic medium initially at a uniform
temperature T0, permeated by an initial magnetic field

H
!

0 ¼ ð0;H0; 0Þ acting along the y-axis. The rectangular
Cartesian co-ordinate system (x, y, z) having origin on
the surface (z = 0) with z-axis pointing vertically into the
medium is introduced. From the generalized Ohm’s law

E
!¼ − μ0H0 − €w; 0; €uð Þ ð14Þ

j
!¼ −

∂Hy
∂z

− ε0Ėx; 0; −
∂Hy
∂x

− ε0ĖzÞ:
�

ð15Þ

F
!¼ μ0H

2
0

∂e
∂x

− ε0μ0€u

� �
; 0; μ0H

2
0

∂e
∂z

− ε0μ0€w

� �� �
ð16Þ

In addition, we consider the plane such that all parti-
cles on a line parallel to y-axis are equally displaced, so
that the equations of displacement vector (u, v,w) and
conductive temperature φ for transversely isotropic ther-
moelastic solid are given by

u ¼ u x; z; tð Þ; v ¼ 0;w ¼ w x; z; tð Þ and φ ¼ φ x; z; tð Þ:
ð17Þ

Now, using the transformation on Eqs. (5) and (12)
following Slaughter (2002) with the aid of (16) and (17)
yields

C11
∂2u
∂x2

þ C13
∂2w
∂x∂z

þ C44
∂2u
∂z2

þ ∂2w
∂x∂z

� �
− β1

∂
∂x

φ − a1
∂2φ
∂x2

þ a3
∂2φ
∂z2

� �� �

þμ0H
2
0

∂e
∂x

− ε0μ0€u

� �
¼ ρ

∂2u
∂t2

;

ð18Þ

C13 þ C44ð Þ ∂2u
∂x∂z

þ C44
∂2w
∂x2

þ C33
∂2w
∂z2

− β3
∂
∂z

φ − a1
∂2φ
∂x2

þ a3
∂2φ
∂z2

� �� �

þμ0H
2
0

∂e
∂z

− ε0μ0€w

� �
¼ ρ

∂2w
∂t2

;

ð19Þ

K1
∂2φ
∂x2

þ K 3
∂2φ

∂z2
¼ 1þ χDχ

� �
T0 β1

∂u̇
∂x

þ β3
∂ẇ
∂z

Þ þ ρCE φ̇ − a1
∂2φ̇

∂x2
− a3

∂2φ̇

∂z2
g�

��	
ð20Þ

where from (7)

β1 ¼ C11 þ C12ð Þα1 þ C13α3;β3 ¼ 2C13α1 þ C33α3;e ¼ ∂u
∂x

þ ∂w
∂z

And stress strain relations given by (5) after using (9)
and (17) becomes

t11 x; z; tð Þ ¼ C11
∂u
∂x

þ C13
∂w
∂z

− β1 φ − a1
∂2φ

∂x2
þ a3

∂2φ

∂z2

� �� �
;

ð21Þ

t22 x; z; tð Þ ¼ c12
∂u
∂x

þ c13
∂w
∂z

− β1 φ − a1
∂2φ

∂x2
þ a3

∂2φ

∂z2

� �� �
;

ð22Þ

t33 x; z; tð Þ ¼ C13
∂u
∂x

þ C33
∂w
∂z

− β3 φ − a1
∂2φ

∂x2
þ a3

∂2φ

∂z2

� �� �
;

ð23Þ

t13 x; z; tð Þ ¼ C44
∂u
∂z

þ ∂w
∂x

� �
; ð24Þ

t12 x; z; tð Þ ¼ t23 x; z; tð Þ ¼ 0: ð25Þ
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We assume that medium is initially at rest. The undis-
turbed state is maintained at reference temperature T0.
Then, we have the initial and regularity conditions given
by

u x; z; 0ð Þ ¼ 0 ¼ u̇ x; z; 0ð Þ;w x; z; 0ð Þ ¼ 0 ¼ ẇ x; z; 0ð Þ;φ x; z; 0ð Þ
¼ 0 ¼ φ̇ x; z; 0ð Þ for z≥0; − ∞ < x < ∞; u x; z; tð Þ
¼ w x; z; tð Þ ¼ φ x; z; tð Þ ¼ 0 for t > 0 when z→∞:

To simplify the solution, the following dimensionless
quantities are used:

ðx′; z′Þ ¼ 1
L
ðx; zÞ; ðu′;w′Þ ¼ ρc21

Lβ1T0
ðu;wÞ; ða′1; a′3Þ

¼ 1

L2
ða1; a3Þ; ρC2

1 ¼ C11φ
′ ¼ φ

T 0
; ðt′11; t′13; t′33Þ

¼ 1
β1T0

ðt11; t13; t33Þ; t′ ¼ C1

L
t:

ð26Þ
Making use of dimensionless quantities defined by

(26) in Eqs. (18)–(20), after suppressing the primes,
yields

1þ δ5ð Þ ∂
2u
∂x2

þ δ4 þ δ5ð Þ ∂
2w

∂x∂z
þ δ2

∂2u
∂z2

þ ∂2w
∂x∂z

� �
−

∂
∂x

φ − a1
∂2φ
∂x2

þ a3
∂2φ
∂z2

� �� �

¼ ε0μ20H
2
0

ρ
þ 1

� �
∂2u
∂t2

;

ð27Þ

δ1 þ δ5ð Þ ∂2u
∂x∂z

þ δ2
∂2w
∂x2

þ δ3 þ δ5ð Þ ∂
2w
∂z2

−
β3
β1

∂
∂z

φ − a1
∂2φ
∂x2

þ a3
∂2φ
∂z2

� �� �

¼ ε0μ20H
2
0

ρ
þ 1

� �
∂2w
∂t2

;

ð28Þ

K1
∂2φ
∂x2

þ K3
∂2φ

∂z2
¼ 1þ χDχ

� �
∂
∂t

δ6
∂u
∂x

þ δ8
∂w
∂z

� �
þ δ7

∂
∂t

φ − a1
∂2φ
∂x2

− a3
∂2φ

∂z2

� �	 

;

ð29Þ
where

δ1 ¼ C13 þ C44

C11
; δ2 ¼ C44

C11
; δ3 ¼ C33

C11
; δ4 ¼ C13

C11
; δ5

¼ β1T 0μ0H
2
0

Lρ2C4
1

; δ6 ¼ Lβ21T 0

ρC1
; δ8 ¼ Lβ1β3T 0

ρC1
; δ7

¼ ρCEC1L:

Laplace transforms is defined by

L f x; z; tð Þ½ � ¼
Z∞
0

e − st f x; z; tð Þdt ¼ ~f x; z; sð Þ: ð30Þ

with basic properties

L
∂ f
∂t

� �
¼ s f x; z; sð Þ − f x; z; 0ð Þ; ð31Þ

L
∂2 f
∂t2

� �
¼ s2 f x; z; sð Þ − sf x; z; 0ð Þ − ∂ f

∂t

� �
t¼0

: ð32Þ

Fourier transforms of a function f with respect to vari-
able x with ξ as a Fourier transform variable is defined
by

F ~f x; z; sð Þ
n o

¼ f̂ ξ; z; sð Þ ¼
Z∞
− ∞

~f x; z; sð Þeiξxdx: ð33Þ

With basic properties: if f(x) and first (n − 1) deriva-
tives of f(x) vanish identically as x→ ± ∞ , then

F
∂n~f x; z; sð Þ

∂xn

( )
¼ iξð Þn f̂ ξ; z; sð Þ ð34Þ

Applying Laplace and Fourier transforms defined by
(31)–(34) on Eqs. (24)-(29) yields

− 1þ δ5ð Þξ2ûþ δ4 þ δ5ð ÞiξDŵ
þ δ2 D2ûþ iξDŵ

� �
− iξ φ̂ − − a1ξ

2φ̂þ a3D
2φ̂

� �� �
¼ ε0μ20H

2
0

ρ
þ 1

� �
s2û;

ð35Þ

δ1 þ δ5ð ÞiξDû − δ2ξ
2ŵ

þ δ3 þ δ5ð ÞD2ŵ −
β3
β1

D φ̂ − − a1ξ
2φ̂þ a3D

2φ̂
� �� �

¼ ε0μ20H
2
0

ρ
þ 1

� �
s2ŵ;

ð36Þ

− K1ξ
2φ̂þ K 3D

2φ̂ ¼ 1þ Gð Þ
s δ6iξûþ δ8Dŵð Þ þ δ7s φ̂ − − a1ξ

2φ̂þ a3D
2φ̂

� �� � �
;

ð37Þ
where

D ¼ d
dz

;G ¼ τ0
χ

1 − e − sχð Þ 1 −
2b
χs

þ 2a2

χ2s2

� �
- a2 − 2bþ 2a2

χs

� �
e − sχ

	 

:

These equations on further simplifications become

− 1þ δ5ð Þξ2 − ε0μ20H
2
0

ρ
þ 1

� �
s2 þ δ2D2

	 

û ξ; z; sð Þ

þ δ4 þ δ5 þ δ2ð ÞiξD½ �ŵ ξ; z; sð Þ

þ − iξð Þ 1þ a1ξ
2 − a3D

2
 �

φ̂ ξ; z; sð Þ ¼ 0;

ð38Þ
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δ1 þ δ5ð ÞiξD½ �û ξ; z; sð Þ þ − δ2ξ
2 þ δ3 þ δ5ð ÞD2 −

ε0μ20H
2
0

ρ
þ 1

� �
s2

	 

ŵ ξ; z; sð Þ − β3

β1
D 1þ a1ξ

2 − a3D
2

 �
φ̂ ξ; z; sð Þ ¼ 0;

ð39Þ
1þ Gð Þsδ6iξ½ �û ξ; z; sð Þ þ 1þ Gð Þsδ8D½ �ŵ ξ; z; sð Þ

þ − K1ξ
2 þ K 3D

2 þ 1þ Gð Þδ7s 1þ a1ξ
2 − a3D

2
� � �

φ̂ ξ; z; sð Þ ¼ 0;

ð40Þ
The above equations can be written as

ζ1 þ δ2D2
 �

û ξ; z; sð Þ þ ζ2D½ �ŵ ξ; z; sð Þ þ ζ3 þ ζ4D
2

 �
φ̂ ξ; z; sð Þ ¼ 0;

ð41Þ
ζ5D½ �û ξ; z; sð Þ þ ζ6 þ ζ7D

2
 �

ŵ ξ; z; sð Þ þ ζ8Dþ ζ9D
3

 �
φ̂ ξ; z; sð Þ ¼ 0;

ð42Þ
ζ10½ �û ξ; z; sð Þ þ ζ11½ �ŵ ξ; z; sð Þ þ ζ12 þ ζ13D

2
 �

φ̂ ξ; z; sð Þ ¼ 0;

ð43Þ
Equations (41)–(43) will have a non-trivial solution if

determinant of coefficient matrix of ðû; ŵ; φ̂Þ vanishes,
and thus we obtain the characteristic equation as

AD6 þ BD4 þ CD2 þ E
� �

û; ŵ; φ̂ð Þ ¼ 0; ð44Þ
where

D ¼ d
dz

;A ¼ − δ2ζ11ζ9 þ ζ13δ2ζ7;

B ¼ δ2ζ6ζ13 þ ζ7ζ1ζ13 þ δ2ζ7ζ12 − δ2ζ11ζ8 − ζ1ζ9ζ11 − ζ5δ2ζ13 þ δ2ζ10ζ9 þ ζ11ζ4ζ5 − ζ10ζ7ζ4;

C ¼ ζ13ζ1ζ6 þ δ2ζ6ζ12 þ ζ1ζ7ζ12 − ζ1ζ11ζ8 þ ζ4ζ8ζ9 − ζ5δ2ζ12 − ζ10δ2ζ8 þ ζ11ζ3ζ5 − ζ3ζ7ζ10;

E ¼ ζ12ζ1ζ6 − ζ10ζ6ζ3;

ζ1 ¼ − 1þ δ5ð Þξ2 − ε0μ20H
2
0

ρ
þ 1

� �
s2; ζ2 ¼ δ4 þ δ5 þ δ2ð Þiξ; ζ3 ¼ − iξ 1þ a1ξ

2� �
;

ζ4 ¼ a3iξ; ζ5 ¼ δ1 þ δ5ð Þiξ; ζ6 ¼ − δ2ξ
2 −

ε0μ20H
2
0

ρ
þ 1

� �
s2; ζ7 ¼ δ3 þ δ5ð Þ;

ζ8 ¼ − 1þ a1ξ
2� � β3

β1
; ζ9 ¼

β3
β1

a3; ζ10 ¼ 1þ Gð Þsδ6iξ½ �; ζ11 ¼ 1þ Gð Þsδ8;
ζ12 ¼ − K1ξ

2 þ 1þ Gð Þδ7s 1þ a1ξ
2� � �

; ζ13 ¼ K3 − 1þ Gð Þδ7sa3

The roots of Eq. (44) are ± λi, (i = 1, 2, 3). The solu-
tion of Eqs. (41)–(43) satisfying the radiation condition
that ðû; ŵ; φ̂Þ→0 as z→∞ can be written as

û ξ; z; sð Þ ¼
X3

j¼1
Aje

− λ jz; ð45Þ

ŵ ξ; z; sð Þ ¼
X3

j¼1
d jAje

− λ jz; ð46Þ

φ̂ ξ; z; sð Þ ¼
X3

j¼1
l jA je

− λ jz; ð47Þ

where Aj, j = 1, 2, 3 being undetermined constants and dj
and lj are given by

d j ¼
δ2ζ13λ

4
j þ ζ13ζ1 − ζ10ζ4 þ δ2ζ12ð Þλ2j þ ζ1ζ12 − ζ10ζ3

ζ13ζ7 − ζ1ζ9ð Þλ4j þ ζ13ζ6 þ ζ12ζ7 − ζ1ζ8ð Þλ2j þ ζ12ζ6
;

ð48Þ

l j ¼
δ2ζ7λ

4
j þ δ2ζ6 þ ζ1ζ7 − δ2ζ5ð Þλ2j þ ζ6ζ1

ζ13ζ7 − ζ1ζ9ð Þλ4j þ ζ13ζ6 þ ζ12ζ7 − ζ1ζ8ð Þλ2j þ ζ12ζ6
:

ð49Þ

t̂11 ξ; z; sð Þ ¼ iξû ξ; z; sð Þ þ δ4Dŵ ξ; z; sð Þ − β3
β1

1þ a1ξ
2 − a3D

2
 �

φ̂ ξ; z; sð Þ;

ð50Þ

t̂33 ξ; z; sð Þ ¼ δ4iξû ξ; z; sð Þ þ δ3Dŵ ξ; z; sð Þ − β3
β1

1þ a1ξ
2 − a3D

2
 �

φ̂ ξ; z; sð Þ;

ð51Þ

t̂13 ξ; z; sð Þ ¼ δ2 Dû ξ; z; sð Þ þ iξŵ ξ; z; sð Þð Þ: ð52Þ

Thus, using (45)–(47) in Eqs. (50)–(52) gives

t̂11 ξ; z; sð Þ ¼ iξ
X3

j¼1
Aje

− λ jz þ δ4D
X3

j¼1
d jAje

− λ jz

− 1þ a1ξ
2 − a3D

2
 �X3

j¼1
l jAje

− λ jz;

ð53Þ

t̂33 ξ; z; sð Þ ¼ δ4iξ
X3

j¼1
Aje

− λ jz þ δ3D
X3

j¼1
d jAje

− λ jz

−
β3
β1

1þ a1ξ
2 − a3D

2
 �X3

j¼1
l jAje

− λ jz;

ð54Þ

t̂13 ξ; z; sð Þ ¼ δ2 D
X3

j¼1
Aje

− λ jz þ iξ
X3

j¼1
d jAje

− λ jz
� �

:

ð55Þ

which on further simplification gives

t̂11 ξ; z; sð Þ ¼ ð iξ − δ4λ1d1 − 1þ a1ξ
2 − a3λ1

2 �
l1

� �� �
e − λ1zA1

þ iξ − δ4λ2d2 − 1þ a1ξ
2 − a3λ2

2 �
l2

� �� �
e − λ2zA2

þ iξ − δ4λ3d3 − 1þ a1ξ
2 − a3λ3

2 �
l3

� �� �
e − λ3zA3Þ;

ð56Þ

t̂33 ξ; z; sð Þ ¼ ðδ4iξ − δ3λ1d1 −
β3
β1

1þ a1ξ
2 − a3λ1

2 �
l1

� �� �
e − λ1zA1

þ δ4iξ − δ3λ2d2 −
β3
β1

1þ a1ξ
2 − a3λ2

2 �
l2

� �� �
e − λ2zA2

þ δ4iξ − δ3λ3d3 −
β3
β1

1þ a1ξ
2 − a3λ3

2 �
l3

� �� �
e − λ3zA3Þ;

ð57Þ
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t̂13 ξ; z; sð Þ ¼ − λ1 þ iξd1ð Þδ2A1e
− λ1z þ − λ2 þ iξd2ð Þδ2A2e

− λ2z

þ − λ3 þ iξd3ð Þδ2A3e
− λ3z:

ð58Þ
which can be further simplified as

t̂11 ξ; z; sð Þ ¼ S1A1 þ S2A2 þ S3A3ð Þ ð59Þ
t̂33 ξ; z; sð Þ ¼ M1A1 þM2A2 þM3A3ð Þ ð60Þ
t̂13 ξ; z; sð Þ ¼ N1A1 þ N2A2 þ N3A3ð Þ ð61Þ

where

S j ¼ iξ − δ4d jλ j − l j 1þ a1ξ
2� �

− a3λ
2
j

h in o
e − λ jz

ð62Þ

N j ¼ δ2 − λ j þ iξd j
� �

e − λ jz; ð63Þ

Mj ¼ δ4iξ − δ3d jλ j −
β3
β1

l j 1þ a1ξ
2� �

− a3λ
2
j

h i� �
e − λ jz;

ð64Þ

Boundary conditions
The appropriate boundary conditions for the thermally
insulated boundaries z = 0 are

t33 x; z; tð Þ ¼ − F1ψ1 xð ÞH tð Þ; ð65Þ
t31 x; z; tð Þ ¼ − F2ψ2 xð ÞH tð Þ; ð66Þ
∂φ
∂z

x; z; tð Þ þ hφ ¼ 0: ð67Þ

where h→ 0 corresponds to thermally insulated surface
and h→∞ corresponds to isothermal surface, F1 and F2
are the magnitude of the forces applied and ψ1(x) and
ψ2(x) specify the vertical and horizontal load distribution
function along x-axis.
Applying dimensionless conditions (26) and suppress-

ing primes and then applying the Laplace and Fourier
transform defined by (30) and (33) on the boundary con-
ditions (65)–(67) and using (47), (60) and (61), the three
equations in three variables A1, A2, A3 are

t̂33 ξ; 0; sð Þ ¼ M1A1 þM2A2 þM3A3 ¼ − F1ψ1 ξð Þ
s

;

ð68Þ

t̂13 ξ; 0; sð Þ ¼ N1A1 þ N2A2 þ N3A3ð Þ ¼ − F2ψ2 ξð Þ
s

;

ð69Þ
Dφ̂ ξ; 0; sð Þ þ hφ̂ ξ; 0; sð Þ ¼ R1A1 þ R2A2 þ R3A3ð Þ ¼ 0;

ð70Þ

where Rj = − λjlj + hlj, note at z = 0, e − λ jz ¼ 1; in (62–64)
for values of S j;Mj;N j and D ¼ ∂

∂z :

Case I: Thermally insulated boundaries
When h = 0 solving (68)–(70), the values of A1, A2, A3

are obtained as

A1 ¼ − F1ψ1 ξð ÞΛ11 þ F2ψ2 ξð ÞΛ21

Λs
; ð71Þ

A2 ¼ F1ψ1 ξð ÞΛ12 − F2ψ2 ξð ÞΛ22

Λs
; ð72Þ

A3 ¼ F1ψ1 ξð ÞΛ13 − F2ψ2 ξð ÞΛ23

Λs
; ð73Þ

where

Λ11 ¼ −N2R3 þ R2N3;
Λ12 ¼ N1R3 − R1N3;
Λ13 ¼ −N1R2 þ R1N2;
Λ21 ¼ M2R3 − R2M3;
Λ22 ¼ −M1R3 þ R1M3;
Λ23 ¼ M1R2 − R1M2;
Λ ¼ −M1Λ11 −M2Λ12 −M3Λ13;

Rj ¼ − λ jl j:

The components of displacement, conductive
temperature, normal stress and tangential stress are ob-
tained from (45) to (47) and (59) to (61) by putting the
values of A1, A2, A3 from (71) to (73) as

û ¼ F1ψ̂1 ξð Þ
sΛ

X3

i¼1
Λ1ie

− λiz
h i

þ F2ψ̂2 ξð Þ
sΛ

X3

i¼1
Λ2ie

− λiz
h i

;

ð74Þ

ŵ ¼ F1ψ̂1 ξð Þ
sΛ

X3

i¼1
diΛ1ie

− λiz
h i

þ F2ψ̂2 ξð Þ
sΛ

X3

i¼1
diΛ2ie

− λiz
h i

;

ð75Þ

φ̂ ¼ F1ψ̂1 ξð Þ
sΛ

X3

i¼1
liΛ1ie

− λiz
h i

þ F2ψ̂2 ξð Þ
sΛ

X3

i¼1
liΛ2ie

− λiz
h i

;

ð76Þ

ct11 ¼ F1ψ̂1 ξð Þ
sΛ

X3

i¼1
SiΛ1ie

− λiz
h i

þ F2ψ̂2 ξð Þ
sΛ

X3

i¼1
SiΛ2ie

− λiz
h i

;

ð77Þ

ct13 ¼ F1ψ̂1 ξð Þ
sΛ

X3

i¼1
NiΛ1ie

− λiz
h i

þ F2ψ̂2 ξð Þ
sΛ

X3

i¼1
NiΛ2ie

− λiz
h i

;

ð78Þ

ct33 ¼ F1ψ̂1 ξð Þ
sΛ

X3

i¼1
MiΛ1ie

− λiz
h i

þ F2ψ̂2 ξð Þ
sΛ

X3

i¼1
MiΛ2ie

− λiz
h i

;

ð79Þ

Case II: Isothermal boundaries
When h→∞ ,solving (68)–(70), using Cramer’s rule, the
values of A1, A2, A3 are obtained as
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A1 ¼ − F1ψ1 ξð ÞΛ�
11 þ F2ψ2 ξð ÞΛ�

21

Λ�s
; ð80Þ

A2 ¼ F1ψ1 ξð ÞΛ�
12 − F2ψ2 ξð ÞΛ�

22

Λ�s
; ð81Þ

A3 ¼ F1ψ1 ξð ÞΛ�
13 − F2ψ2 ξð ÞΛ�

23

Λ�s
; ð82Þ

where

Λ�
11 ¼ −N2R

�
3 þ R�

2N3;
Λ�

12 ¼ N1R
�
3 − R�

1N3;
Λ�

13 ¼ −N1R
�
2 þ R�

1N2;
Λ�

21 ¼ M2R
�
3 − R�

2M3;
Λ�

22 ¼ −M1R
�
3 þ R�

1M3;
Λ�

23 ¼ M1R
�
2 − R�

1M2;
Λ� ¼ −M1Λ�

11 −M2Λ�
12 −M3Λ�

13;

where R�
j ¼ l j.

The components of displacement, conductive
temperature, normal stress and tangential stress are ob-
tained from (45) to (47) and (59) to (61) by putting the
values of A1, A2, A3 from (80) to (82) as

û ¼ F1ψ̂1 ξð Þ
sΛ�

X3

i¼1
Λ�

1ie
− λiz

h i
þ F2ψ̂2 ξð Þ

sΛ�
X3

i¼1
Λ�

2ie
− λiz

h i
;

ð83Þ

ŵ ¼ F1ψ̂1 ξð Þ
sΛ�

X3

i¼1
liΛ�

1ie
− λiz

h i
þ F2ψ̂2 ξð Þ

sΛ�
X3

i¼1
diΛ2ie

− λiz
h i

;

ð84Þ

φ̂ ¼ F1ψ̂1 ξð Þ
sΛ�

X3

i¼1
liΛ�

1ie
− λiz

h i
þ F2ψ̂2 ξð Þ

sΛ�
X3

i¼1
liΛ2ie

− λiz
h i

;

ð85Þ

ct11 ¼ F1ψ̂1 ξð Þ
sΛ�

X3

i¼1
SiΛ�

1ie
− λiz

h i
þ F2ψ̂2 ξð Þ

sΛ�
X3

i¼1
SiΛ�

2ie
− λiz

h i
;

ð86Þ

ct13 ¼ F1ψ̂1 ξð Þ
sΛ�

X3

i¼1
NiΛ�

1ie
− λiz

h i
þ F2ψ̂2 ξð Þ

sΛ�
X3

i¼1
NiΛ�

2ie
− λiz

h i
;

ð87Þ

ct33 ¼ F1ψ̂1 ξð Þ
sΛ�

X3

i¼1
MiΛ�

1ie
− λiz

h i
þ F2ψ̂2 ξð Þ

sΛ�
X3

i¼1
MiΛ�

2ie
− λiz

h i
;

ð88Þ

Applications
We consider a normal line load F1 per unit length acting
in the positive z-axis on the plane boundary z = 0 along
the y-axis and a tangential load F2 per unit length, acting
at the origin in the positive x-axis. Suppose an inclined
load, F0 per unit length is acting on the y-axis and its in-
clination with z-axis is θ (see Fig. 1), we have

F1 ¼ F0cosθ and F2 ¼ F0sinθ: ð89Þ

Special cases
Concentrated force
The solution due to concentrated normal force on the
half space is obtained by setting

ψ1 xð Þ ¼ δ xð Þ;ψ2 xð Þ ¼ δ xð Þ; ð90Þ
where δ(x) is Dirac delta function.
Applying Fourier transform defined by (33) on (90)

yields

ψ̂1 ξð Þ ¼ 1; ψ̂2 ξð Þ ¼ 1: ð91Þ
For case I, using (91) in Eqs. (74)–(79) and for case II,

using (91) in Eqs. (83)–(88), the components of displace-
ment, stress and conductive temperature are obtained
for case I and case II, respectively.

Uniformly distributed force
The solution due to uniformly distributed force applied
on the half space is obtained by setting

ψ1 xð Þ;ψ2 xð Þ ¼ 1 if j x j ≤m
0 if j x j> m

�
ð92Þ

The Fourier transforms of ψ1(x) and ψ2(x) with respect
to the pair (x, ξ) for the case of a uniform strip load of
non-dimensional width 2m applied at origin of co-
ordinate system x = z = 0 in the dimensionless form
after suppressing the primes becomes

ψ̂1 ξð Þ ¼ ψ̂2 ξð Þ ¼ 2 sin ξmð Þ
ξ

� �
; ξ≠0: ð93Þ

Fig. 1 Inclined load over a transversely isotropic
magneto-thermoelastic solid
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For case I, using (93) in Eqs. (74)–(79) and for case II,
using (93) in Eqs. (83)–(88), the components of displace-
ment, stress and conductive temperature are obtained
for case I and case II.

Linearly distributed force
The solution due to linearly distributed force applied on
the half space is obtained by setting

ψ1 xð Þ;ψ2 xð Þf g ¼ 1 −
j x j
m

if j x j ≤m
0 if j x j> m

(
ð94Þ

Here, 2 m is the width of the strip load, and applying
the transform defined by (33) on (94), we get

ψ̂1 ξð Þ ¼ ψ̂2 ξð Þ ¼ 2 1 − cos ξmð Þð Þ
ξ2m

� �
; ξ≠0: ð95Þ

For case I, using (95) in Eqs. (74)–(79) and for case II,
using (95) in Eqs. (83)–(88), the components of displace-
ment, stress and conductive temperature are obtained
for case I and case II, respectively.

Inversion of the transformation
To find the solution of the problem in physical domain
and to invert the transforms in Eqs (74)–(79) and for
case II in Eqs. (83)–(88), here, the displacement compo-
nents, normal and tangential stresses and conductive
temperature are functions of z, the parameters of La-
place and Fourier transforms s and ξ respectively and

hence are of the form f̂ ðξ; z; sÞ. To find the function ~f ð
x; z; tÞ in the physical domain, we first invert the Fourier
transform using

~f x; z; sð Þ ¼ 1
2π

Z ∞

− ∞
e − iξx f̂ ξ; z; sð Þdξ

¼ 1
2π

Z ∞

− ∞
cos ξxð Þ f e − isin ξxð Þ f oj jdξ; ð96Þ

where fe and fo are respectively the odd and even parts
of f̂ ðξ; z; sÞ: We obtain Fourier inverse transform by re-
placing s by ω in (96). Following Honig and Hirdes

(1984), the Laplace transform function ~f ðx; z; sÞ can be
inverted to f(x, z, t) for problem I by

f x; z; tð Þ ¼ 1
2πi

Zeþi∞

e − i∞

~f x; z; sð Þe − stds: ð97Þ

The last step is to calculate the integral in Eq. (97).
The method for evaluating this integral is described in
Press (1986).

Numerical results and discussion
To demonstrate the theoretical results and effect of
memory-dependent derivatives, the physical data for co-
balt material, which is transversely isotropic, is taken
from Kumar et al. (2016) given as

C11 ¼ 3:07� 1011Nm − 2;C33

¼ 3:581� 1011Nm − 2;C13

¼ 1:027� 1010Nm − 2;C44

¼ 1:510� 1011Nm − 2; β1
¼ 7:04� 106Nm − 2deg − 1; β3
¼ 6:90� 106Nm − 2deg − 1; ρ
¼ 8:836� 103Kgm − 3;CE

¼ 4:27� 102 jKg − 1deg − 1;K1

¼ 0:690� 102Wm − 1Kdeg − 1;K3

¼ 0:690� 102Wm − 1K − 1;K�
1

¼ 1:313� 102Wsec;K �
3 ¼ 1:54� 102Wsec;T0

¼ 298K;H0 ¼ 1Jm − 1nb − 1; ε0
¼ 8:838� 10 − 12 Fm − 1; L ¼ 1:

The values of rotation Ω and magnetic effect H0

are taken as 0.5 and 10, respectively. The software
FORTRAN has been used to determine the compo-
nents of displacement, stress and conductive
temperature. A comparison has been made to show
the effect of kernel function of MDD on the various
quantities.

1. The solid line with square symbol represents a =
0.0, b = 0.0, K(t − ξ) = 1,

2. The dashed line with circle symbol represents a
¼ 0:0; b ¼ 1

2 ;Kðt − ξÞ ¼ 1þ ðξ − tÞ=χ,
3. The dotted line with triangle symbol represents a

¼ 0:0; b ¼ 1
χ ;Kðt − ξÞ ¼ ξ − t þ 1,

4. The dash-dotted line with diamond symbol repre-
sents a = 1, b = 1, K(t − ξ) = [1 + (ξ − t)/χ]2

Figures 2, 3, 4, 5, 6 and 7 shows the variations of the
displacement components (u and w), conductive
temperature φ and stress components ( t11, t13 and t33)
for a transversely isotropic magneto-thermoelastic
medium with concentrated force and with combined ef-
fects of rotation, two temperatures with different kernel
function K(t − ξ), respectively. The displacement compo-
nents (u and w), conductive temperature φ and stress
components ( t11 and t13) illustrate the opposite behav-
iour for the kernel function a ¼ 0:0; b ¼ 1

χ ;Kðt − ξÞ
¼ ξ − t þ 1 but with other kernel functions shows the
same pattern. However, stress component t33 illustrate
the opposite behaviour for the kernel function [1 + (ξ
− t)/χ]2 but with other kernel functions shows the
same pattern. These components vary (increases or
decreases) during the initial range of distance near
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the loading surface of the inclined load and follow a
small oscillatory pattern for the rest of the range of
distance.

Conclusion
From the above study, the following is observed:

� Displacement components (u and w), conductive
temperature φ and stress components ( t11, t13 and

t33) for a transversely isotropic magneto-
thermoelastic medium with concentrated force and
with combined effects of two-temperature model of
thermoelasticity with different kernel functions of
MDD, respectively

� In order to estimate the nature of the displacements,
stresses and temperature distributions in the physical
domain, an efficient approximate numerical inverse
Fourier and Laplace transform technique is adopted.

Fig. 2 Variation of the displacement component u with distance x

Fig. 3 Variation of the displacement component w with distance x
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� Moreover, the magnetic effect of two temperatures,
rotation, and the angle of inclination of the applied
load plays a key part in the deformation of all the
physical quantities.

� K(t − ξ) = [1 + (ξ − t)/χ]2 shows the more oscillatory
nature for the displacement components and stress
components.

� The result gives the inspiration to study magneto-
thermoelastic materials with memory-dependent
derivatives as an innovative domain of applicable
thermoelastic solids.

� The shape of curves shows the impact of Kernel
function on the body and fulfils the purpose of the
study.

Fig. 4 Variation of the conductive temperature φ with distance x

Fig. 5 Variation of the stress component t11with distance x
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� The outcomes of this research are extremely helpful
in the 2-D problem with dynamic response of
memory-dependent derivatives in transversely
isotropic magneto-thermoelastic medium with two
temperatures which is advantageous to successful
applications of memory dependence in heat
conductive sense.

Nomenclature
δij Kronecker delta
Cijkl Elastic parameters
βij Thermal elastic coupling tensor
T Absolute temperature
T0 Reference temperature
φ conductive temperature

Fig. 6 Variation of the stress component t13with distance x

Fig. 7 Variation of the stress component t33with distance x
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tij Stress tensors
eij Strain tensors
ui Components of displacement
ρ Medium density
CE Specific heat
aij Two-temperature parameters
αij Linear thermal expansion coefficient
Kij Thermal conductivity
Tij Maxwell stress tensor
χ Time delay
μ0 Magnetic permeability
K(t − ξ) Kernel function
u! Displacement vector

H
!

0 Magnetic field intensity vector

j
!

Current density vector
Fi Components of Lorentz force
τ0 Relaxation time
ε0 Electric permeability
δ(t) Dirac’s delta function

h
!

Induced magnetic field vector

E
!

Induced electric field vector
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