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Abstract

This paper deals with the propagation of the plane wave in a nonlocal magneto-thermoelastic semiconductor solid
with rotation. The fractional-order three-phase lag theory of thermoelasticity with two temperatures has been
applied. When a longitudinal wave is incident on the surface z= 0, four types of reflected coupled longitudinal
waves (the coupled longitudinal displacement wave, the coupled thermal wave, coupled carrier density wave, and
coupled transverse displacement wave) are identified. The plane wave characteristics such as phase velocities,
specific loss, attenuation coefficient, and penetration depth of various reflected waves are computed. The effects of
two temperatures, non-local parameter, fractional order parameter, and Hall current on these wave characteristics
are illustrated graphically with the use of MATLAB software.
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Introduction

The plane wave propagation in a photo-thermo-
magneto-elastic solid has gained significant importance
due to its applications in the area of semiconductors,
magnetometers, solar panels, nuclear fields, geophysics,
and other linked topics. Lotfy et al. (2020) discussed Hall
current effect in a semiconductor medium exposed to a
very strong magnetic field. Lotfy (2017) examined the
wave propagation in a semiconductor medium having a
spherical cavity using FOT. Ali et al. (2020) examined
the reflection of waves over a semiconductor rotating
medium using the TPL model with FOT. Tang and Song
(2018) studied wave reflection in nonlocal semi-
conductor rotating media by using the plasma diffusion
equation. Alshaikh (2020) examined the transmission of
photo-thermal waves in a semiconductor for diffusion
and rotation effects. Kaur et al. (2020a) discussed the
propagation of the plane wave in a visco-thermoelastic
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rotating medium with Hall current. Lata et al. (2021)
discussed the propagation of plane harmonic waves
thermo-magneto-elastic rotating medium with multi-
dual-phase lag heat transfer. Lata and Kaur (2018) dis-
cussed the effect of Hall current on a rotating trans-
versely isotropic thermoelastic medium with 2T. Eringen
(2004; 1974; 1972) developed the nonlocal continuum
mechanics theory to study the micro-scaled/nano-scaled
structure problems. These theories exhibit that “consider
the state of stress at a point as a function of the states of
the strain of all points in the medium. But in classical
continuum mechanics, the state of stress at a certain
point uniquely depends on the state of strain on that
same point”. Also, some other researchers worked on
the wave propagation in different media using different
theories of thermoelasticity as Lim et al.(1992), Marin
(2010; 1996), Abbas and Marin (2018), Kaur et al
(2020b; 2019a), Bhatti et al. (2019; 2020), Marin et al.
(2015, 2016, 2020), Zhang et al. (2020a), Bhatti et al.
(2021), Lata and Kaur (2019b; 2020; 2019), Pandey et al.
(2021), Taye et al. (2021), Zhang et al. (2020b), Bhatti

and Abdelsalam (2020), Zhang et al. (2021), and
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Golewski (2021). Despite the above research, no research
has been done for the plane wave propagation with the
fractional order three-phase lag two-temperature heat
transfer in rotating magneto thermoelastic nonlocal
semiconducting medium.

This research investigates the transmission of plane
waves in a nonlocal semiconducting rotating medium
under the influence of a high magnetic field and Hall
current. The governing equations are expressed with
TPL-2T FOT of thermoelasticity. For considered 2-D
model, when a longitudinal wave is incident on the sur-
face z=0, four types of reflected waves distinguished as
coupled longitudinal waves (CLD-wave, CT-wave, CCD-
wave, CTD-wave) are identified. The plane wave charac-
teristics of various reflected waves are computed numer-
ically and demonstrated graphically. The effects of two
temperatures, non-local parameter, fractional order par-
ameter, and Hall current on wave characteristics illus-
trated graphically with the use of MATLAB software
have been studied.

Basic equations

Following Tang and Song (2018), Othman and Abd-
Elaziz (2019), and Mahdy et al. (2020), the equations of
motion with Lorentz force is

ojjj+ (1—€2V2) ﬂosijr]jHr
=p(1-V?){it; + 2(Q x u), + (Q x (@ x u)) },

(1)

where subscript followed by “,” comma denotes partial
derivative w.r.t. space variable, and the superimposed
dot denotes time derivative. € x (Q x u) represents the
centripetal acceleration due to the time-varying motion
and 2Q X u denotes Coriolis acceleration.

For very high magnetic field strength, Hall current
term is also introduced, so generalized Ohm’s law (Oth-
man and Abd-Elaziz 2019) is written as

Ji + wetetin ] Hi = 09 (Ei + ﬂofzyrﬂjHr)7 (2)
Equation (2) can also be written as

1+ m?

J {E—i—uo(uxH)—Z—;e(]xH)}

Following Lotfy et al. (2020), the stress-displacement-
strain-carrier density function relation is given by

0 = (AM,J—/))T—O\,,N)dij + /J(M,‘J + uj,i) . (3)

where, T=¢ - ag

B=03BL+2uar,

6, =(BA+2u)d,,

Here, a > 0 is the two-temperature parameter.
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For the semiconductors nanostructure medium, for
the plasma transportation process, the equation of
plasma diffusion is given by

ON t N t
(xva_:7zv ) :DEVZN(x,y,Z,t)— (x,y,z, )
T

+ K% (4)

The fractional-order heat conduction equation with
two temperatures (Kaur et al. 2020a, Mahdy et al. 2020)
is given by

1<,-,»(1+(T;) 5—; 'y
@ g 2 g
(e
X [PCET-F/)),;TOéij—PQ}a (5)
where

0 < a <1 for weak conductivity,
a = 1 for normal conductivity,
1 < a<2 for strong conductivity,
K= K,»(S,;,K};. = K74, iis not summed.

Method and solution of the problem

Consider a nonlocal semiconducting magneto-
thermoelastic homogeneous isotropic medium initially at
a constant temperature 7, and rotating about the y-axis
with an angular velocity Q = (0, Q,0). Consider orthog-
onal Cartesian coordinates (x,y,z) with origin on the
surface (z=0) and the z-axis directing downwards in the
semiconductor medium. For the 2-D dynamic problem
in xz—plane, we consider displacement vector as

u= (u,0,w)(x,z,t). (6)

Consider that a very high-intensity magnetic field
H, = (0, Hp, 0) is applied in the positive y-direction and
also assuming that induced electric field E = 0, therefore
from ohms law we have

]y =0. (7)
and /, and J, are given as
_ Ooptlo ([ du ow
]’“_1+m2 (mat ot)’ ®)
_ SopHo (ou  ow
]271+ m2<at "ot ) ®)

Using Egs. (6), (7), (8), (9) in Egs. (1), (4), and (5), the
equations for nonlocal 2-D semiconducting medium
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with 2T in the absence of heat source, i.e., taking Q=0,
are:
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and the stress-displacement-carrier density function
relation (3) can be written as

ou ow
o = 2) — ——-pBT-6,N, 14
o KA+ y)ax+/1 p BT-6,N (14)
ou ow
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du ow
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The dimensionless quantities are assumed as:
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Using (17) in Egs. (10), (11), (12), (13) and after sup-
pressing the primes yields
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where

c% xKd,
,€3 =
DEQ)*
Eg(xT
= 2 , €1
dupCr(w*)° 1’

61 = , €2

arpCeDro*1’
BT 1
T pCEA ) T

The parameter ¢; is thermoelastic coupling parameter
as it depends on thermoelastic properties (i.e., specific
heat, Lame’s elastic constants, and temperature T,). The
parameter €3 is thermoelectric coupling parameter as it
depends on thermoelectrical properties (i.e., coefficient
of electronic deformation d,,).

By using Eq. (17) in Egs. (14), (15), (16) and after sup-
pressing the primes, it yields

+(1 25)82 {(]) <a2+a N,
(22)
ou

ou ow
Oxz(X,Z,t) = 62(82 5), (24)

We now present the potential functions ¢ and y as

W W, ow o
o 2w T w V% a
=V?y, (25)

Using (25) in Egs. (18), (19), (20), (21) yields
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The stress displacement carrier density relations
becomes
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Plane-wave propagation
Consider the plane wave solution of the Egs. (26), (27),
(28), (29) of the form

o\ (9
14 _ g e(i{(x sinf+z cos&)—icat)7 (33)
9 [
N N

where sinf, cosf indicates the projection of wave nor-
mal to the x -z plane, w represents angular frequency
and ¢ denotes the wavenumber of a plane wave propa-
gating in x - z plane and ¢, ¥, ¢, N are the constants to
be determined .

Using Eq. (33) in Egs. (26), (27), (28), (29) yields

[Co+ G+ [+ GEJw + [1+aé]g

+N

=0, (34)
66> + {5+ [0 + (5] y- =0, (35)
es[1+a®|g + [(,-€*]N =0, (36)
01387 + [(12E% + L10) @ + &2i0N = 0. (37)

And the stress-strain relations can be written as

sin26 __
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Eliminating ¢, ¥, ¢ and N from the Eqgs. (34), (35),
(36), (37) yields the characteristic equation as

A&+ BE® + CE* + DE + E =0, (41)
where
A= = {15000sa + (120a(s — (50612,
B = —aes(13(s + riwes(alsa — agriwes(s(s — (130ol7a +

(13Co0sa — (130o(sa + (120505 — (106012 — (1200Cals +
C10Cals + (12000605 — (306C10 + (12047 — (120505,

C = (130oCs + (130007a — (130007 — £3(130s — £3C13(7 +
(e2830als — €28306(3)iw + (£2€3(2(s + £2€30al7 — £2€3(6(1
- £283(5(3)aiw — (120o0(s + (100205 + (1206C10o — C10C106
= GroColals — (1205¢1 + (120207 — (120al7Co + (100al7 +
(1209(5C5 = (100505,

D = (130907-e3013(7 + iw(26305(s
+ e2830407 283061 —€26305(5

+aeres(r(7-aere3(5(1) 10800205 + (1009¢1 (s
+(12(9(5(1_610(1(5 + (10(7(2_(10(9(4(7 + (10(9(3(5

E = iw(e630207 — €283(5(1) + (1000l5¢1 — (12000207
= (10098207 + C100o(30s.

The solution of Eq. (41) give eight roots in ¢ that is,
+&, £ &, £ &, £ &, and we are concerned with the posi-
tive imaginary parts of the roots. When a coupled longi-
tudinal wave falls on the boundary z = 0, four reflected
waves are generated. It exhibits that the generated waves
are coupled in nature. Corresponding to positive four
roots and descending order of their velocities, four
coupled waves are transmitted, specifically CLD wave re-
lated with ¢ transmitting with the maximum speed Vi,
CT-wave linked with the ¢ having speed V, and CCD-
wave related with N having speed V3 and CTD-wave
linked with the vector potential ¢ transmitting with the
lowest speed V,. Following Lata et al. (2021), the charac-
teristics properties of these waves are obtained by the
following expressions

(i) Phase velocity

The phase velocities of the plane wave is represented
as
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(ii) Attenuation coefficient

The attenuation coefficient of the plane wave is repre-
sented as

Q; =1Img(§;),j =1,2,3,4.

(iii) Specific loss

The specific loss of the plane wave is represented as:

AW
W= (W):
]

AW is the energy dissipated and W is the energy
stored.

L|me €))
Re(¢))

,j=1,2,3,4.

(iv) Penetration depth

The penetration depth is given by

S; j=1,2,3,4.

~Img(§)

Particular cases

1. For nonlocal semiconductor medium with rotation,
Hall current, and two temperatures ( m, a, a, Q, §) >
0, from the above relations, the following cases can
also be obtained
i. Three-phase lag FOT (TPL-FOT)
Ifr,>77>7,20.

ii. Dual-phase lag FOT (DPL-FOT)
Ifr, = O,K?} =0 7,>7720.

ili. Single-phase lag FOT (SPL-FOT) or Lord-
Shulman MDD
If 17=0,7,=0, 7,=75>0 and K;‘j =0, and
ignoring 7.

iv. Three-phase lag (TPL)
If 7> 7171 >71,20,0 = 1,G, =G;
=iw

v. Dual-phase lag (DPL)
Ifr, = O,I(;;. =0 a=land 7, > 1720,G,,
=G, = iw

vi. Single-phase lag (SPL) or Lord—Shulman model
Ifr7=0,7,=0,7,=75>0 a=1,and K;‘/ =0,
and ignoring 7;. G, = i©

= GTT

v
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vii. GN theory of Type-III
Ifr7=0,7,=0,7,=0 a=1l,and I(fj¢0,1(ij¢0
vili. GN theory of Type-II
Ifr7=0,7,=0,7,=0a=1,and K;;=0
ix. GN theory of Type-I
Ifr7=0,7,=0,7,=0 K}; =0,a=1.
2. For local semiconductor medium ¢ = 0, for all the
above a —j cases
3. For semiconductor medium without rotation, Q) =
0, for all the above a - j cases
4. For semiconductor medium without Hall current
m=0, for all the above a —j cases
5. For semiconductor medium without two
temperatures a = 0, for all the above a - cases
6. For semiconductor medium without FOT a = 0, for
all the above a - j cases

Numerical results and discussion

To demonstrate the theoretical results and effect of Hall
current, fractional order parameter, two temperatures,
and non-local parameter, the physical data for semicon-
ducting medium taken from Mahdy et al. (2020) is given
as

A=3.64x10°Nm? u=546x10""Nm™>, S
=7.04 x 10°Nm™ deg™, d,
=-9x103 m3, p=233x10°Kgm3, C;
=695 JKg 'K K =150 Wm 'K, K*
=1.54 x 10°Ws, To =800K, 77 =1 x 1077,
=2x107%,1, =2 x 107s,Dg
=25%x103 m?s Hy=1Jm 'nb !, 1
=5x10"s, No=10"m>3,sp=2ms ', g
=8.838 x 10 Fm™",E, = 1.11eV,ar
=3x10°K1.

Figures 1, 2, 3, and 4 indicate the change of phase vel-
ocities w.r.t. frequency w respectively. Figure 1 illustrates
the change in phase velocity with the change in frac-
tional order heat transfer parameter a. Figure 2 illus-
trates the change in phase velocity with the change in
Hall current parameter m. As the Hall current increases,
phase velocity decreases. Figure 3 illustrates the change
in phase velocity with the change in two-temperature
parameter a. The higher the value of two temperatures,
the lower is the phase velocity of the plane wave.

Figure 4 illustrates the change in phase velocity with
the change in non-local parameter ¢. The higher the
value of ¢, the lower is the phase velocity of plane wave.

Figures 5, 6, 7, and 8 indicate the change of attenu-
ation coefficients w.r.t. frequency o respectively. Figure
5 illustrates the change in attenuation coefficients with
the change in fractional order heat transfer parameter a.
For the initial value of the frequency, attenuation
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Frequency w
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Fig. 1 Phase velocity w.rt w and fractional order heat transfer parameter a
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coefficients decrease sharply. The higher the value of a,
the higher is the attenuation coefficients. Figure 6 illus-
trates the change in attenuation coefficients with the
change in Hall current parameter m. For the initial value
of the frequency, attenuation coefficients decrease
sharply. However, As the Hall current increases, attenu-
ation coefficients decrease. Figure 7 illustrates the
change in attenuation coefficients with the change in

two-temperature parameter a. The higher the value of
two temperature, the lower is the attenuation coeffi-
cients of a plane wave. Figure 8 illustrates the change in
attenuation coefficients with the change in non-local
parameter ¢ . The higher the value of parameter ¢, the
lower is the attenuation coefficients of a plane wave.
Figures 9, 10, 11, and 12 indicate the change of specific
loss w.r.t. frequency w respectively. Figure 9 illustrates
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Fig. 2 Phase velocity w.rt w and Hall current parameter m
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Fig. 3 Phase velocity w.rt @ and two-temperature parameter a

Frequency w

the change in specific loss with the change in fractional
order heat transfer parameter a. The higher the value of
a, the higher is the specific loss. Figure 10 illustrates the
change in specific loss with the change in Hall current
parameter m. As the Hall current increases, specific loss
decreases. Figure 11 illustrates the change in specific loss
with the change in two-temperature parameter 4. The

higher the value of two temperatures, the lower is the
specific loss of plane wave. Figure 12 illustrates the
change in specific loss with the change in non-local par-
ameter ¢. The higher the value of ¢, the lower is the spe-
cific loss of plane wave.

Figures 13, 14, 15, and 16 indicate the change of pene-
tration depth w.r.t. frequency w respectively. Figure 13

3.0

N
[8)]
1

N
o
1

1.5

1.0

Attenuation Coefficient

o
(8]
1

~N

0.0 T T
0.0

Fig. 4 Phase velocity w.rt w and non-local parameter €

2.0

Frequency w
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Fig. 5 Attenuation coefficient w.rt w and fractional order heat transfer
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parameter a

illustrates the change in penetration depth with the
change in fractional order heat transfer parameter a The
higher the value of a, the higher is the penetration
depth. Figure 14 illustrates the change in penetration
depth with the change in Hall current parameter m. For
the initial value of the frequency, penetration depth in-
creases sharply, and after half range of frequency, it

decreases. However, the higher the value of Hall current
increases, the higher is the penetration depth. Figure 15
illustrates the change in penetration depth with the
change in two temperature parameter a. The higher the
value of two temperature, the lower is the penetration
depth of plane wave. Figure 16 illustrates the change in
penetration depth with the change in non-local

Fig. 6 Attenuation coefficient w.rt w and Hall current parameter m
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c
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Fig. 7 Attenuation coefficient w.rt w and two temperature parameter a

parameter e¢. The higher the value of non-local param- .
eter ¢, the lower is the penetration depth of plane wave.

Conclusions

e In this study, the propagation of plane harmonic

waves in magneto-thermoelastic rotating semicon-

ducting medium has been studied.

The semiconducting medium is rotating with
angular frequency (2 and is under the influence of
high magnetic field. The governing equations are
modeled using the Hall current effect and fractional
order three phase lag heat transfer with two
temperature.

The non-dimensional expressions for penetration
depth, phase velocities, specific loss, and attenuation
coefficients of various reflected waves are calculated
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Fig. 9 Specific loss w.rt w and fractional order heat transfer parameter a

and drawn graphically with the help of MATLAB
software.

Effect of fractional order heat transfer, Hall current,
two-temperature, and non-local parameter ¢ on the
penetration depth, phase velocities, specific loss, and
attenuation coefficients of various reflected waves
are represented graphically. The results exhibit that
as the value of fractional order heat transfer

parameter « increases, variations in the penetration
depth, phase velocities, specific loss, and attenuation
coefficients also increases. The higher the value of
Hall current, the lower will be the penetration
depth, phase velocities, specific loss, and attenuation
coefficients of the plane wave. However, two-
temperature parameters show different behavior
with different characteristics of a plane wave.
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Fig. 10 Specific loss w.rt @ and Hall current parameter m
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Fig. 11 Specific loss w.rt w and two temperature parameter a

e The non-local parameter ¢ has a significant effect on
the penetration depth, phase velocities, specific loss,

and attenuation coefficients of various reflected .

waves. The deviation in penetration depth, phase
velocities, specific loss, and attenuation coefficients
of various reflected waves is higher when ¢ =0, as
the value of € increases, the variations in penetration

depth, phase velocities, specific loss, and attenuation
coefficients of various reflected waves decrease.

The study may help in the design of semiconductor
nano-devices, Hall effect sensors, magnetic switches,
applications in the automotive world, geology, and
seismology as well as semiconductor nanostructure
devices such as MEMS/NEMS.
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Fig. 13 Penetration depth w.rt w and fractional order heat transfer parameter a

Nomenclature p medium density
0;; Kronecker delta Cr specific heat
to the pulse rise time T temperature change
w lateral deflection of the beam I moment of inertia of cross-section
K;; thermal conductivity t time
T, reference temperature E; intensity tensor of the electric field
t; stress tensors m, mass of the electron
e; strain tensors t, electron collision time
u; displacement components C;jx elastic parameters
B thermal elastic coupling tensor M7 thermal moment of inertia
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Fig. 14 Penetration depth w.rt @ and Hall current parameter m
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Fig. 15 Penetration depth w.rt w and two temperature parameter a

A; pyromagnetic coefficient

7, phase lags of the heat flux

77 phase lags of the temperature gradient
J; conduction current density tensor

B1Mr thermal moment of the beam

¢ conductive temperature

Uo magnetic permeability

a;; linear thermal expansion coefficient

a;; two-temperature parameter &> permutation symbol

m Hall effect parameterm = w.t, = O"Z—}‘;HO H, magnetic strength
‘ e charge of the electron
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Fig. 16 Penetration depth w.rt w and non-local parameter €
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n, electron number density

0y electrical conductivity and = o¢ = %2”
7, phase lags of the thermal displacement

K f] materialistic constant

t;i(x) non-local stress tensor

0;(x) local stress tensor

€ nonlocal parameter

a internal characteristic length

eo constant characterizes the nonlocal effect of material
d,, coefficient of electronic deformation
ar coefficient of linear thermal expansion
A, u Lame’s elastic constants

N carrier density

Dg carrier diffusion coefficients

7 photo-generated carrier lifetime

E, energy gap of the semiconductor parameter
9Ny
aT

Nj carrier concentration at equilibrium position

o velocity of recombination on the surface

M Hartmann number or magnetic parameter for semi-
conductor elastic medium

Kk = 52 coupling parameter for thermal activation

Abbreviations

TPL: Three-phase lag; 2T: Two temperatures; FOT: Fractional order theory;
CLD: Coupled-longitudinal displacement; CT: Coupled thermal; CCD: Coupled
carrier density; CTD: Coupled transverse displacement; TIT: Transversely
isotropic thermoelastic; SPL-FOT: Single-phase lag FOT; GN: Green-Naghdi;
TPL-FOT: Three-phase lag FOT; DPL-FOT: Dual-phase lag FOT; 2-D: Two-
dimensional

Acknowledgements
Not applicable

Authors’ contributions

Igbal Kaur: idea formulation, conceptualization, formulated strategies for
mathematical modeling, methodology refinement, formal analysis, validation,
writing—review and editing. Kulvinder Singh: conceptualization, effective
literature review, experiments, simulation, investigation, methodology,
software, supervision, validation, visualization, writing—original draft. Both
authors read and approved the final manuscript.

Funding
No fund/grant/scholarship has been taken for the research work.

Availability of data and materials
For the numerical results, cobalt material has been taken for thermoelastic
material from Mahdy et al. (2020).

Declarations

Competing interests
The authors declare that they have no conflict of interest.

Author details

1Department of Mathematics, Government College for Girls, Palwal,
Kurukshetra, Haryana, India. ’Kurukshetra University Kurukshetra, Kurukshetra,
Haryana, India.

Received: 20 May 2021 Accepted: 13 September 2021
Published online: 26 September 2021

References
Abbas, I. A, & Marin, M. (2018). Analytical solutions of a two-dimensional
generalized thermoelastic diffusions problem due to laser pulse. Iran J Sci

(2021) 16:14 Page 15 of 16

Technol Trans Mech Eng, 42(1), 57-71 https://doi.org/10.1007/540997-017-
0077-1.

Ali, H,, Jahangir, A, & Khan, A. (2020). Reflection of waves in a rotating
semiconductor nanostructure medium through torsion-free boundary
condition. Ind J Phys, 94(12), 2051-2059 https://doi.org/10.1007/512648-019-
01652-y.

Alshaikh, F. (2020). Mathematical modeling of photothermal wave propagation in
a semiconducting medium due to L-S theory with diffusion and rotation
effects. Mech Based Des Struct Mach, 1-16 https://doi.org/10.1080/15397734.2
020.1776620.

Bhatti, M. M, Ellahi, R, Zeeshan, A, Marin, M., & ljaz, N. (2019). Numerical study of
heat transfer and Hall current impact on peristaltic propulsion of particle-
fluid suspension with compliant wall properties. Mod Phys Lett B, 33(35),
1950439 https.//doi.org/10.1142/50217984919504396.

Bhatti, M. M., & Abdelsalam, S. 1. (2020). Thermodynamic entropy of a magnetized
Ree-Eyring particle-fluid motion with irreversibility process: a mathematical
paradigm. ZAMM J Appl Math Mech https://doi.org/10.1002/zamm.202000186,
101(6).

Bhatti, M. M, Elelamy, A. F,, Sait, M. S,, & Ellahi, R. (2020). Hydrodynamics
interactions of metachronal waves on particulate-liquid motion through a
ciliated annulus: application of bio-engineering in blood clotting and
endoscopy. Symmetry, 12(4), 532-547 https://doi.org/10.3390/sym12040532.

Bhatti, M. M., Phali, L, & Khalique, C. M. (2021). Heat transfer effects on electro-
magnetohydrodynamic Carreau fluid flow between two micro-parallel plates
with Darcy-Brinkman-Forchheimer medium. Arch Appl Mech, 91(4), 1683-
1695 https.//doi.org/10.1007/500419-020-01847-4.

A. Cemal Eringen. (2004). Nonlocal continuum field theories. (A. C. Eringen, Ed).
New York: Springer New York. https.//doi.org/10.1007/b97697

Eringen, A. C. (1974). Theory of nonlocal thermoelasticity. Int J Eng Sci, 12(12),
1063-1077 https://doi.org/10.1016/0020-7225(74)90033-0.

Eringen, A. C, & Edelen, D. G. B. (1972). On nonlocal elasticity. Int J Eng Sci, 10(3),
233-248 https://doi.org/10.1016/0020-7225(72)90039-0.

Golewski, G. L. (2021). On the special construction and materials conditions
reducing the negative impact of vibrations on concrete structures. Mater
Today Proc https://doi.org/10.1016/j.matpr.2021.01.031.

Kaur, I, & Lata, P. (2019a). Effect of hall current on propagation of plane wave in
transversely isotropic thermoelastic medium with two temperature and
fractional order heat transfer. SN Appl Sci, 1(8) https://doi.org/10.1007/542452-
019-0942-1.

Kaur, I, & Lata, P. (2019b). Rayleigh wave propagation in transversely isotropic
magneto-thermoelastic medium with three-phase-lag heat transfer and
diffusion. Int J Mech Mater Eng, 14(1) https://doi.org/10.1186/540712-019-01
08-3.

Kaur, I, & Lata, P. (2020). Stoneley wave propagation in transversely isotropic
thermoelastic medium with two temperature and rotation. GEM Int J
Geomath, 11(1), 1-17 https;//doi.org/10.1007/513137-020-0140-8.

Kaur, 1, Lata, P, & Singh, K. (2020a). Reflection of plane harmonic wave in rotating
media with fractional order heat transfer. Adv Mater Res, 9(4), 289-309.

Kaur, I, Lata, P, & Singh, K. (2020b). Reflection and refraction of plane wave in
piezo-thermoelastic diffusive half spaces with three phase lag memory
dependent derivative and two-temperature. Waves Random Complex Media,
1-34 https://doi.org/10.1080/17455030.2020.1856451.

Lata, P, Kaur, I, & Singh, K. (2021). Reflection of plane harmonic wave in
transversely isotropic magneto-thermoelastic with two temperature, rotation
and multi-dual-phase lag heat transfer. Lect Notes Netw Syst, 140 https://doi.
0rg/10.1007/978-981-15-7130-5_42.

Lata, P, & Kaur, I. (2018). Effect of hall current in Transversely Isotropic magneto
thermoelastic rotating medium with fractional order heat transfer due to
normal force. Adv Mater Res (South Korea), 7(3), 203-220 https://doi.org/10.12
989/amr.2018.7.3.203.

Lata, P, & Kaur, 1. (2019). Plane wave propagation in transversely isotropic
magneto-thermoelastic rotating medium with fractional order generalized
heat transfer. Struct Monit Maintenance, 6(3), 191-218 https.//doi.org/10.12
989/smm.2019.6.3.191.

Lim, C. C, Pimbley, J. M., Schmeiser, C, & Schwendeman, D. W. (1992). Rotating
Waves for Semiconductor Inverter Rings. SIAM J Appl Math, 52(3), 676-690
https://doi.org/10.1137/0152037.

Lotfy, K. (2017). A novel solution of fractional order heat equation for
photothermal waves in a semiconductor medium with a spherical cavity.
Chaos Solitons Fractals, 99, 233-242 https.//doi.org/10.1016/j.chaos.2017.04.01
7.


https://doi.org/10.1007/s40997-017-0077-1
https://doi.org/10.1007/s40997-017-0077-1
https://doi.org/10.1007/s12648-019-01652-y
https://doi.org/10.1007/s12648-019-01652-y
https://doi.org/10.1080/15397734.2020.1776620
https://doi.org/10.1080/15397734.2020.1776620
https://doi.org/10.1142/S0217984919504396
https://doi.org/10.1002/zamm.202000186
https://doi.org/10.3390/sym12040532
https://doi.org/10.1007/s00419-020-01847-4
https://doi.org/10.1007/b97697
https://doi.org/10.1016/0020-7225(74)90033-0
https://doi.org/10.1016/0020-7225(72)90039-0
https://doi.org/10.1016/j.matpr.2021.01.031
https://doi.org/10.1007/s42452-019-0942-1
https://doi.org/10.1007/s42452-019-0942-1
https://doi.org/10.1186/s40712-019-0108-3
https://doi.org/10.1186/s40712-019-0108-3
https://doi.org/10.1007/s13137-020-0140-8
https://doi.org/10.1080/17455030.2020.1856451
https://doi.org/10.1007/978-981-15-7130-5_42
https://doi.org/10.1007/978-981-15-7130-5_42
https://doi.org/10.12989/amr.2018.7.3.203
https://doi.org/10.12989/amr.2018.7.3.203
https://doi.org/10.12989/smm.2019.6.3.191
https://doi.org/10.12989/smm.2019.6.3.191
https://doi.org/10.1137/0152037
https://doi.org/10.1016/j.chaos.2017.04.017
https://doi.org/10.1016/j.chaos.2017.04.017

Kaur and Singh International Journal of Mechanical and Materials Engineering (2021) 16:14

Lotfy, K, El-Bary, A. A, Hassan, W., & Ahmed, M. H. (2020). Hall current influence of
microtemperature magneto-elastic semiconductor material. Superlattice
Microst, 139, 106428 https://doi.org/10.1016/j.5pmi.2020.106428.

Mahdy, A. M. S, Lotfy, K, Ahmed, M. H, E-Bary, A, & Ismail, E. A. (2020).
Electromagnetic Hall current effect and fractional heat order for
microtemperature photo-excited semiconductor medium with laser pulses.
Results Phys, 17, 103161 https://doi.org/10.1016/}.rinp.2020.103161.

Marin, M. (2010). Some estimates on vibrations in thermoelasticity of dipolar
bodies. J Vib Control, 16(1), 33-47 https://doi.org/10.1177/1077546309103419.

Marin, M, Vlase, S, & Paun, M. (2015). Considerations on double porosity
structure for micropolar bodies. AIP Adv, 5(3), 037113 https;//doi.org/10.1
063/1.4914912.

Marin, M. (1996). Generalized solutions in elasticity of micropolar bodies with
voids. Rev Acad Canaria Cienc, 8(1), 101-106.

Marin, M., Craciun, E. M., & Pop, N. (2020). Some results in Green - Lindsay
thermoelasticity of bodies with dipolar structure. Mathematics, 1-12 https.//
doi.org/10.3390/math8040497.

Marin, M., Craciun, E-M.,, & Pop, N. (2016). Considerations on mixed initial-
boundary value problems for micropolar porous bodies. Dyn Syst Appl, 25,
175-195.

Othman, M. I. A, & Abd-Elaziz, E. M. (2019). Effect of initial stress and Hall current
on a magneto-thermoelastic porous medium with microtemperatures. Ind J
Phys, 93(4), 475-485 https.//doi.org/10.1007/512648-018-1313-2.

Pandey, P, Das, S, Craciun, E-M, & Sadowski, T. (2021). Two-dimensional
nonlinear time fractional reaction—diffusion equation in application to sub-
diffusion process of the multicomponent fluid in porous media. Meccanica,
56(1), 99-115 https://doi.org/10.1007/511012-020-01268-1.

Tang, F, & Song, Y. (2018). Wave reflection in semiconductor nanostructures.
Theor Appl Mech Lett, 8(3), 160-163 https;//doi.org/10.1016/j.taml.2018.03.003.

Taye, I. M, Lotfy, K, El-Bary, A. A, Alebraheem, J, & Asad, S. (2021). The hyperbolic
two temperature semiconducting thermoelastic waves by laser pulses.
Comput Mater Contin, 67(3), 3601-3618 https://doi.org/10.32604/cmc.2021.01
5223.

Zhang, L, Bhatti, M. M,, Marin, M., & Mekheimer, K. S. (2020a). Entropy analysis on
the blood flow through anisotropically tapered arteries filled with magnetic
zinc-oxide (ZnO) nanoparticles. Entropy, 22(10) https://doi.org/10.3390/E22101
070.

Zhang, L, Bhatti, M. M,, & Michaelides, E. E. (2021). Electro-magnetohydrodynamic
flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-
Forchheimer model. Int J Numerical Methods Heat Fluid Flow, 31(8), 2623~
2639 https://doi.org/10.1108/HFF-09-2020-0566.

Zhang, P, Han, S, Golewski, G. L, & Wang, X. (2020b). Nanoparticle-reinforced
building materials with applications in civil engineering. Adv Mech Eng,
12(10), 168781402096543 https://doi.org/10.1177/1687814020965438.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 16 of 16

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your manuscript to a SpringerOpen®
journal and benefit from:

Submit your next manuscript at » springeropen.com



https://doi.org/10.1016/j.spmi.2020.106428
https://doi.org/10.1016/j.rinp.2020.103161
https://doi.org/10.1177/1077546309103419
https://doi.org/10.1063/1.4914912
https://doi.org/10.1063/1.4914912
https://doi.org/10.3390/math8040497
https://doi.org/10.3390/math8040497
https://doi.org/10.1007/s12648-018-1313-2
https://doi.org/10.1007/s11012-020-01268-1
https://doi.org/10.1016/j.taml.2018.03.003
https://doi.org/10.32604/cmc.2021.015223
https://doi.org/10.32604/cmc.2021.015223
https://doi.org/10.3390/E22101070
https://doi.org/10.3390/E22101070
https://doi.org/10.1108/HFF-09-2020-0566
https://doi.org/10.1177/1687814020965438

	Abstract
	Introduction
	Basic equations
	Method and solution of the problem
	Plane-wave propagation
	Particular cases
	Numerical results and discussion
	Conclusions
	Nomenclature
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author details
	References
	Publisher’s Note

