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Abstract

Background: Although structures made of functionally graded materials have been studied by many researchers,
no research may be found in literature on boundary element analysis of the functionally graded viscoelastic
structures.

Methods: In the present paper, a 2D boundary element formulation capable of modeling time-dependent functionally
graded materials (FGM) is presented. A numerical implementation of the Somigliana identity in terms of the
displacements is developed to solve 2D problems of the exponentially graded viscoelasticity. The FGM concept
can be applied to various materials, for structural and functional purposes. In this model, only Green functions of the
nonhomogeneous elastostatic problems are needed with material properties that vary continuously along a given
dimension.

Results and Conclusions: Results reveal that the boundary element approach can successfully be employed for the
present complicated problem for arbitrary time histories of the applied loads and arbitrary boundary conditions,
without the need to use relaxation functions or mathematical transformations.
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Background
In recent years, the functionally graded materials (FGMs),
as a category of the composite materials, have generated a
great deal of attention. An FGM is an advanced material
whose composition changes gradually and results in
corresponding changes in its properties (Suresh and
Mortensen 1998). Because of the special features of the
FGMs with potential applications to lots of engineering
fields, they have attracted attention of numerous scien-
tists and engineers in broad areas of research. More-
over, a variety of nonhomogeneous engineering media
made of polymers, plastics, metals and alloys at ele-
vated temperatures, composites, concrete, etc., exhibit
significant rate and history dependencies. Appropriate
simulation of these types of structures requires using ap-
propriate viscoelastic models.
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Boundary element method (BEM) has recently found
considerable applications in solving lots of engineering
problems, such as viscoelasticity, contact mechanics, elas-
toplasticity, thermoelasticity, fracture mechanics, elasto-
dynamics, etc. (Aliabadi 2002). The viscoelastic media
can effectively and accurately be treated by the BEM
(Ashrafi and Farid 2009; Ashrafi et al. 2012). The BEM
just requires the boundary data as input, and there is no
need for discretizing the domain under consideration
into elements. Adaptation of the BEM to nonhomoge-
neous media is a hard task; because determination of
the fundamental solutions corresponding to the concen-
trated loads is difficult for such materials. The funda-
mental solutions for heat transfer problems in the
nonhomogeneous media have been presented using
BEM algorithms by some researchers (Shaw and Makris
1992; Clements 1998; Clements and Budhi 1999; Gray
et al. 2003; Sutradhar and Paulino 2004; Kuo and Chen
2005). Also, the fundamental solutions of the FGMs
for 2D and 3D elasticity problems have been recently
developed in some other works (Chan et al. 2004;
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Criado et al. 2007, 2008). Using a Fourier transform
technique, these functions have been derived for
exponentially graded media. Although extensive works
have been developed to effectively model the consti-
tutive behavior of the FG structures, most of these
researches have been limited to elastic behavior ana-
lysis (Gao et al. 2008; Wang and Qin 2012; Ashrafi
et al. 2013a, 2013b).

Methods
In this paper, the boundary element formulation is
proposed based on the differential viscoelastic constitu-
tive equations of nonhomogeneous SLS model. The
resulting algorithm is capable of solving the quasistatic
problems for exponentially graded viscoelastic materials
with arbitrary boundary conditions and therefore, pro-
vides a reasonable model for certain realistic situations.
Avoiding internal domain elements is one of the ob-
jectives of this paper, which results in numerical
discretization of the boundary of the considered non-
homogeneous problem, only. Therefore, this work re-
duces the number of variables to be computed, which
makes numerical treatment of the infinite and semi-
infinite time-dependent problems easy.

Constitutive equations
Using two fundamental elements of elastic spring and
viscous dashpot to model time-dependent behavior,
construction of the viscoelastic models by suitable
combinations of this pair of elements becomes easy. A
response closer to that of a real structure is obtained by
adding a linear spring in series with the Kelvin solid unit
(Mase and Mase 1999). This model is believed to
represent SLS, which considers both instantaneous and
time-dependent behavior of a specific FG structure. In
general, the stress components of elastic and Kelvin
viscoelastic parts of the model can be expressed as

σ ij ¼ σe2ij ¼ σKij ð1Þ

where σ is the total stress and σe2 and σK are the elastic and
the Kelvin viscoelastic parts of the SLS, respectively. The
total strain component can also be divided into two parts as

εij ¼ εe2ij þ εKij ð2Þ

where the Cartesian coordinates are represented by sub-
scripts i and j. Also, the Kelvin viscoelastic stress com-
ponents can be expressed as

σKij ¼ σelij þ σvij ð3Þ

where σv and σel are the viscous and elastic parts of the
stresses developed in the Kelvin unit of the SLS model,
respectively.
The constitutive equations for the linear elastic part of
the SLS model, by assuming infinitesimal strains, can be
written according to the generalized Hooke's law as
(Mase and Mase 1999):

σe2ij ¼ Cijkm xð Þ εe2km ð4Þ

where Cijkm are the nonhomogeneous isotropic elasti-
city tensor, which is a function of the coordinate
vector x. The most general form of the fourth-order
isotropic tensor Cijkm can be shown to have the fol-
lowing form

Cijkm xð Þ ¼ λ xð Þδij δkm þ μ xð Þ δik δjm þ δimδjk
� � ð5Þ

in which λ and μ are Lame’s constants, given by

λ ¼ ν E xð Þ
1þ νð Þ 1−2νð Þ ; μ ¼ E xð Þ

2 1þ νð Þ ð6Þ

where E and ν are Young's modulus and Poisson's ratio,
respectively. The exponential material gradation of Lame's
constants in the x-direction is chosen as

μ xð Þ ¼ μ0 exp 2γ xð Þ
λ xð Þ ¼ λ0 exp 2γ xð Þ ð7Þ

where γ is the gradient parameter. A material with expo-
nentially gradation has been widely used in the literature,
since such a graded composition represents a justifiable
model for certain real situations of the time-dependent
nonhomogeneous materials (Jin 2006).
Similarly, the elastic part of the Kelvin viscoelastic

stress can be written as

σe1ij ¼ Cijkm xð ÞεKkm ¼ E1 xð Þ �Cijkm εKkm ð8Þ

Based on the generalized Newton's law, and using a
similar procedure, the viscous stress components of the
Kelvin viscoelastic unit can be obtained as (Mase and
Mase 1999)

σvij ¼ Kijmn xð Þ _εKmn ð9Þ

where Kijmn represents the nonhomogeneous, iso-
tropic viscosity characteristic tensor of the material
that is a function of the spatial variable x and can be
defined as

Kijmn xð Þ ¼ βλλ xð Þ δijδmn

þ βμμ xð Þ δimδjn þ δinδjm
� � ð10Þ



Figure 1 An FG viscoelastic plate with two circular cutouts
under edge tractions at x = a.
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in which, βμ and βλ are the hydrostatic and the deviatoric
viscosity coefficients of the model, respectively.
Now, based on Eqs. (3) to (10), we derive

σ ij ¼ E1 xð Þ �Ckmij εkm þ E1 xð Þ �K kmij _εkm

− E1 xð Þ �Ckmij
σkm

E2 �Ckmij
þ E1 xð Þ �K kmij

_σ km

E2 �Ckmij

� �

ð11Þ

In obtaining the boundary integral equations, a simplifi-
cation is employed only for the viscosity coefficients, i.e.
βμ = βλ. Thus, the general viscoelastic equation of the SLS
model can be obtained as

σ ij ¼ E1E2

E1 þ E2

� �
�Cijkm εkm

þ βE2E1

E1 þ E2

� �
�Cijkm _εkm−

βE1

E1 þ E2

� �
_σ ij ð12Þ
0 100 200 3
0

2

4

6

8

10

12

14
x 10

-3

t (

)
m(tne

mecalpsi
Dlaida

R

3

6.5

7

7.5

8

8.5

9

Figure 2 Effects of the heterogeneity parameter on time history of ra
Boundary integral equations
The viscoelastic integral equations of the boundary
and interior points are obtained by imposing the
weighted residual technique on the equilibrium equa-
tions. In the BEM, the Kelvin fundamental solution of
an elastic infinite body is adopted as a proper function
for weighting of the differential equilibrium relations
as (Sutradhar et al. 2008):

0 ¼
Z
D
ψi σ ij;j þ Bi

� �
dv ð13Þ

where Bj is a body force acting in the j direction and
ψi is the fundamental solution which represents effect
of a unit concentrated load applied at a point of an
infinite domain. After using the fundamental solution
in the corresponding Green's function, one can reduce
it to the BEM. The direct integral equation requires a
displacement fundamental solution. The fundamental
solution for 2D elastic problems in exponentially graded
structures has been recently derived as (Chan et al.
2004)

ψi ¼ e−2γ x C0K0 γj j rj jð Þ þ C1K 1 γj j rj jð Þ þ Gnsf g ð14Þ

where

C0 ¼ 3−4ν
8πμ0 1−νð Þ

1 0
0 1

� 	

C1 ¼
r2
rj j γj j−γ2γj j rj j

16πμ0 1−νð Þ
1 0
0 −1

� 	 ð15Þ

in which K0 and K1 are the modified Bessel functions.
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Figure 3 Effects of the heterogeneity parameter on time history of radial displacement of the viscoelastic plate.
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By integrating Equation 13 by parts, applying the
divergence theorem, and noting that

ψi;j ¼ 1
2
ψi;j þ ψj;i


 �
¼ εψij ð16Þ

in which ∂D is the boundary of the problem and nj is
the outward normal vector; we have

0 ¼
Z
∂D
ψi ti ds−

Z
D
εψij σ ij dvþ

Z
D
ψi Bi dv ð17Þ

By substituting the viscoelastic constitutive Equation 12
into the integral Equation 17, we have
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Figure 4 Effects of the heterogeneity on tangential displacements of the
0 ¼
Z
∂D
ψi tids−

E1E2

E1 þ E2

� �Z
D
εψij �Cijmn εmn

� �
dv

−
E1E2

E1 þ E2

� �Z
D
εψij β �Cijmn _εmn

� �
dv

þ E1

E1 þ E2

� �Z
D
εψij β _σ ij

� �
dvþ

Z
D
ψi Bi dv

ð18Þ

In addition, by taking the fundamental equilibrium
equation into account, we have

Bψ
i zð Þ ¼ Δ x; zð Þ ei

σψ
ij;j ¼ −Bψ

i
ð19Þ
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Figure 5 Effects of the heterogeneity on radial displacements of the second hole of the viscoelastic plate.
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where the unit vector component ei corresponds to a unit posi-
tive force in the i direction applied at z point, and Δ (x, z) is
the Dirac delta function, in wherein z and x represent the field
and the source points, respectively. Equation 18, by performing
some mathematical manipulations, can be rewritten as

Cji ui xð Þ þ βCji _ui xð Þ ¼ þβ

Z
∂D
ψji

_t idsþ
Z
D
ψji

_Bi dv

� 	

−
Z
∂D
tψji uidsþ β

Z
∂D
tψji _uids

� 	
þ E1 þ E2

E1

� �

�
Z
∂D
ψji ti dsþ

E1 þ E2

E1

� � Z
D
ψji Bi dv

ð20Þ
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Figure 6 Effects of the heterogeneity on tangential displacements of th
where free term (Єji) is exactly the well-known one of
the in elastostatic formulations. Equation 20 may be
considered as the integral constitutive equation of time-
dependent functionally graded structures modeled properly
by the SLS model.
The domain integral of the body forces can easily be

transformed into an equivalent boundary integral equa-
tion, which results in equation in terms of the boundary
values only; however, for more simplicity, we neglect it. In
a similar manner, the boundary integral equations of the
stresses can be derived.
The next step in numerical discretization is dividing the

boundary ∂D into Ne elements; so that after choosing
identical numbers of the source points and the nodes, and
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Figure 7 Effects of the heterogeneity parameter on time history of longitudinal displacement of the viscoelastic plate. (x=2, y=0).
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calculating all integrals, the BEM discretization equations
may be derived in a matrix form as follows

Hu tð Þ þ βH _u tð Þ ¼ E1 þ E2

E1

� �
Gt tð Þ þ βð ÞG _t tð Þ

þ E1 þ E2

E1

� �
DB tð Þ

ð21Þ

It should be noted in the, for solving the above time-
dependent differential equation, it was necessary to ap-
proximate the displacement and the traction rates in
the time domain by a time marching treatment. Finally,
the presented algorithm has been cast into a unique
program and then solved by the MATLAB software.

Results and discussion
For evaluating the accuracy and the efficiency of the pro-
posed approach, a numerical viscoelastic problem wherein
the material properties are assumed to be exponential
functions of the Cartesian coordinate x, is considered.
In this regard, a heterogeneous FG viscoelastic plate

with exponential material gradation in the x-direction and
two circular cutouts as shown in Figure 1 is considered.
The considered plate is subjected to a uniform traction P
in the x-direction at the edge x = a, where

P ¼ 20Mpa t ≤200 sð Þ
0 200 < t < 700 sð Þ

�
ð22Þ

The opposite end of the considered plate is fixed, while
its other boundaries are free of tractions. It is assumed
that the plate is sufficiently thin such that a plane stress
condition holds. In this problem, Boltzmann's solid model
is employed to formulate the differential constitutive equa-
tions of the heterogeneous viscoelastic structures.
This problem is solved using the proposed method,

adopting the geometric and material parameters as a = 2
m, b = 1 m, c = 1 m, γ = 0.25, 1, 2 and 3, λ0 = 5 GPa, μ0 =
350 MPa, υ = 0.4 and β = 24. The diameter of the circular
cutouts is d = 0.35 m. Due to using the present-graded
boundary integral equation approach, only about 54
boundary elements have been used for the boundary
discretization. Using the traditional finite element pro-
cedures necessitates using thousands of elements and
nodal points.
Time history of the radial displacement component of a

node of the heterogeneous plate located at (x = 0.75, y = 0.5)
is depicted in Figure 2 for exponential material properties
variations and various material gradation exponents.
Time histories of the radial and tangential displacement

components of the nodes located at the first hole of the FG
viscoelastic plate are shown in Figures 3 and 4 for various
gradation exponents, respectively. In addition, the radial and
tangential displacement components of the nodes located at
the second hole of the FG plate are shown respectively in
Figures 5 and 6 for various gradation exponents.
Time history of the longitudinal displacement compo-

nent of the node (x = 2, y = 0) of the heterogeneous
viscoelastic plate with exponential material properties
variations is shown in Figure 7. These results are given
for different material gradation exponents.

Conclusions
In the present paper, a new numerical formulation is pre-
sented for accomplishment of the simplified viscoelastic
analysis of the functionally graded media by the BEM.
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This approach avoids using relaxation functions or math-
ematical transformations, and it is capable of solving the
quasistatic viscoelastic problems with arbitrary load time
dependence and arbitrary boundary conditions. A numer-
ical example, as an application, was provided to evaluate
this boundary element formulation. Only the displacement
and traction fundamental solutions of the FG elastostatic
structures are needed in the present formulation. This
computational system was easily solved by adopting a lin-
ear time approximation for the displacement and traction
rates. Other advantage of the presented approach is that
the mathematical integral representation needs only the
boundary data. Numerical discretization was done without
any domain approximations, and the integral equations
were applied only on the boundaries.
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