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Flapwise bending vibration analysis of
functionally graded rotating double-tapered beams
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Abstract

Background: During the past decade, many researchers have focused on the vibration characteristics of stationary
and rotating functionally graded beams employing various methods of analysis. Hitherto, the studies have been
mainly confined to uniform beams. Hence, the present study is aimed at studying the free vibration characteristics
of functionally graded double-tapered rotating cantilever beam with symmetric cross section.

Material and Method: This paper presents a method which considers the deformation variables to determine
flapwise bending vibrations of rotating functionally graded doubletapered beam attached to a rigid hub. The
tapered beam is characterized by continuously variable Young’s modulus along the thickness direction according to
a power law. The equations of motions are derived using hybrid deformation variables employing Lagrange’s
approach. Rayleigh-Ritz method is used to evaluate the frequencies of the beam.

Results: The effect of several parameters such as material composition gradient, taper ratios, hub radius ratio and
rotational speed on flapwise bending natural frequencies of tapered beams are investigated.

Conclusions: Variation in taper ratios affects the frequency parameters of the beam. The frequency parameters are
observed to increase with an increase in hub radius. The power law index has negligible influence on the trend of
flapwise bending natural frequencies with an increase in angular speed for different taper ratios.

Keywords: Functionally graded beam; Rotating beam; Rayleigh-Ritz method; Flapwise vibration; Double-tapered beam
Background
Generally, to increase the strength as well as stability of
the structure and to reduce the weight, tapered beams
have practical importance at the design stage of structures,
such as the helicopter blades, rotating machinery, wind
turbine blades, etc. The design as well as analysis and esti-
mation of dynamic characteristics of these structures is
very difficult. Centrifugal inertia force due to rotation is
one of the critical factors in evaluating the dynamic char-
acteristics of the rotating structures. Many researchers
have investigated the dynamic characteristics of the homo-
geneous rotating beams in the past. Tsai et al. (2011) in-
vestigated the free vibrations for inclined Euler beam
rotating at constant angular speed using the co-rotational
finite element method combined with floating frame
method. In this work, the equations of motion were de-
rived in terms of an inertial global coordinate system using
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d’Alembert principle and principle of virtual work. A
method based on the power series solution was proposed
by Huang et al. (2010) for a slender beam rotating at high
angular velocity, in which the beam was divided into equal
segments for estimating flapwise vibration and coupled
lagwise and axial vibration. New shape functions that
include the rotating speed, element position, and centrifu-
gal stiffening effect were considered to derive new finite
element to evaluate free vibrations of beams rotating at
high speeds by Gunda et al. (2009). Using p-version finite
element method, the vibration characteristics of a rotating
beam were obtained by Cheng et al. (2011). Fracture me-
chanics and Lagrange equation were used to obtain crack
element stiffness matrix and p-version finite element
model respectively in the analysis. The vibrations and reli-
ability of rotating beams were studied considering the
random properties under random excitations by Hosseini
and Khadem (2007). Finite element method and space
state analysis were applied to obtain the equations of
motion. Free vibrations of tapered rotating beam in elastic
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and post elastic areas were evaluated using variational princi-
ples to derive the equations of motions in the works of Das
et al. (2009). Assuming the centrifugal force as constant, the
differential equation of motion of rotating beam was reduced
as stiff string and natural frequencies of uniform and tapered
beams were evaluated by Ganesh and Ganguli (2013) using
Rayleigh-Ritz method. A new finite element was developed
by Babu Gunda and Ganguli (2008) satisfying the governing
equation of Euler-Bernoulli rotating beams to study the static
and dynamic behavior of rotating beam. Lin et al. (2006)
evaluated bending-bending vibrations of rotating damped
beam with pre-twist and an elastically restrained root and
their effects on the complex frequencies of rotating beams
were observed. Banerjee and Jackson (2013) studied on
free vibration characteristics of a rotating tapered Rayleigh
beam considering centrifugal stiffening, outboard force,
arbitrary hub radius, and rotary inertia.
Smooth and continuous variation in material properties

in one or more directions in case of structures like beams
plates and shells, which are made from functionally
graded materials (FGMs), exhibits several advantages over
homogeneous and laminated composite materials. During
the past one decade, many researchers have turned their
interest to study the vibration and dynamic characteristics
of FGM structures. Sankar (2001) developed a solution for
a functionally graded beam subjected to transverse loads,
whose Young’s modulus was assumed to vary in thickness
direction, and found that the stress concentration depends
on the distribution of constituent material of the beam.
Based on two-dimensional theory of elasticity, Ying et al.
(2008) proposed an exact solution for free vibrations of
functionally graded beams resting on elastic foundation
wherein material properties were assumed to vary in
thickness direction as per exponential law. Higher order
shear deformation theory was implemented by Kadoli
et al. (2008) to study the behavior of the FG beam with
variation of material composition based on power law
under uniformly distributed load with different end condi-
tions. Differential equation and its solution for deflection
of FGM beams resting on elastic foundation using
second-order theory were obtained by Murin et al. (2013)
and used in free vibration analysis of the beams. Consider-
ing the fourth-order differential equation of the second-
order beam theory, modal analysis was carried out for
beams by Aminbaghai et al. (2012). Using the first-order
shear deformation theory, dynamic stiffness matrix was
derived by Ziane et al. (2013) to evaluate the free vibra-
tions of functionally graded box beam.
The above studies chiefly focused on the evaluation of dy-

namic characteristics of homogeneous stationary and rotat-
ing uniforms and FGM beams that are stationary. For the
design and analysis of tapered rotating structures like wind
turbine blades, helicopter blades, rotating machinery, etc., vi-
bration characteristics are vital parameters. The knowledge
on these characteristics play a very important role in de-
sign stage for studying the dynamic behavior and to
avoid structural resonance. The flapwise and chordwise
dynamic behavior of the beam depends on the nature of
the transverse loads, geometry of the component, and
the boundary conditions. Hitherto, the studies have been
mainly confined to uniform beams. Hence, the present
study is aimed at studying the free vibration characteris-
tics of double-tapered rotating cantilever beam with
symmetric cross section. The beam material considered
is FGM and the variables considered are taper ratio,
composition variation of material as per power law
index, hub radius ratio, and rotational speed. The results
so obtained are compared with those reported in the
earlier works based on different approaches.

Material and Method
Functionally graded beam
Consider a doubly symmetric cross-section functionally
graded beam with length, L, width, w0, and height, h0, at
the root of the beam and width, w, and height, h, at the tip
of the beam as shown in Fig. 1. The graded material prop-
erties vary symmetrically along thickness direction from
the core towards the surface according to a power law:

P zð Þ ¼ P mð Þ þ P cð Þ−P mð Þ
� � 2� z

h

����
����
n

ð1Þ
where P(z) represents an effective material property (i.e.,
density, P(z), or Young’s modulus, E(z)) and P(m) and P(c)
are metallic and ceramic properties, respectively.
The volume fraction exponent or power law index, n, is a

variable whose value is greater than or equal to zero and
the variation in properties of the beam depends on its mag-
nitude. Structure is constructed with functionally graded
material with ceramic rich at top and bottom surfaces (at z
= h/2 and −h/2) with protecting metallic core (at z = 0).

Equations of motion
For the beam considered in this study, the equations of
motion are obtained with the following assumptions:

1. There is a smooth and continuous variation in
properties along thickness direction.

2. The neutral and centroidal axes in the cross section
of the rotating beam coincide so that effects due to
eccentricity and torsion can be negligible.

3. Cross section of the beam varies uniformly along its
length with the uniform taper.

4. Shear and rotary inertia effects of the beam are
neglected due to slender shape of the beam.

Figure 1 shows the deformation of the neutral axis of a
beam fixed to a rigid hub rotating about the axis z. The ta-
pered beam is attached to a rigid hub which rotates with



Fig. 1 Configuration of the functionally graded double-tapered rotating beam
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constant angular speed and no external force acts on the
beam. The beam rotates at an angular speed of Ω (t) about
the z-axis. In the present work, a hybrid set of Cartesian
variable w and a non-Cartesian variable s is approximated
by spatial functions and corresponding coordinates are
employed to derive the equations of motion. The position
of a generic point on the neutral axis of the double-
tapered beam before deformation located at P0 changes to
P after deformation and its elastic deformation is denoted

as d̂ that has two components in two-dimensional space.

Approximation of deformation variables
Using the Rayleigh-Ritz assumed mode method, the de-
formation variables are approximated as

s x; tð Þ ¼
Xμ1
j¼1

ϕ1j xð Þq1j tð Þ ð2Þ

and

w x; tð Þ ¼
Xμ3
j¼1

ϕ3j xð Þq3j tð Þ ð3Þ

In the above equations, ϕ1j and ϕ3j are the assumed
modal functions (test functions) for s and w, respectively.
Any compact set of functions which satisfies the essential
boundary conditions of the cantilever beam can be used as
the test functions. The qijs are the generalized coordinates
and μ1 and μ3 are the number of assumed modes used for
s and w, respectively. The total number of modes, μ, is
equal to the sum of individual modes, i.e., μ = μ1 + μ3.
The geometric relation between the arc length stretch
s and Cartesian variables u and w presented by Yoo and
Shin (1998) as

s ¼ uþ 1
2

Zx
0

w0ð Þ2� �
dσ ð4Þ

where a symbol with a prime (′) represents the partial
derivative of the symbol with respect to the integral do-
main variable.

Strain energy of the system
The total elastic strain energy of the beam considering
the assumptions given in “Functionally graded beam”
section can be written as

Es ¼ 1
2
E zð ÞA xð Þ

Z
L

ds
dx

� �2

dxþ 1
2
E zð ÞIy xð Þ

Z
L

d2w
dx2

� �2

dx i ¼ 1; 2; μð Þ

ð5Þ
where Iy(x) is the second moment of area of the tapered
beam.
For the beam tapers in two planes, the general parame-

ters of the beam are given by

h xð Þ ¼ ho 1−τh
x
L

	 

ð6Þ

w xð Þ ¼ wo 1−τw
x
L

	 

ð7Þ



Table 1 Comparison of the non-dimensional lowest three
flapwise bending natural frequencies of a homogenous
stationary beam with different taper ratios (δ = 0)

τh τb 0.2 0.4 0.6 0.8

0.0

(a) Fundamental frequency

0.0 3.15601 3.76285 4.09697 4.58531 5.39758

3.51602a 3.76286a 4.09698a 4.58531a 5.39759a

0.2 3.60827 3.85511 4.18932 4.67815 5.49265

3.60828a 3.85512a 4.18932a 4.67816a 5.49266a

0.4 3.73707 3.98419 4.31877 4.80842 5.62551

3.73708a 3.98419a 4.31878a 4.80842a 5.62552a

0.6 3.93427 4.18234 4.51799 5.00903 5.82882

3.93428a 4.18235a 4.51799a 5.00903a 5.82882a

0.8 4.29250 4.54369 4.88244 5.37615 6.19641

4.29249a 4.54368a 4.88244a 5.37614a 6.19639a

(b) Second natural frequency

0.0 22.0344 22.5018 23.1186 24.0210 25.6558

22.0345a 22.5018a 23.1186a 24.0211a 25.6558a

0.2 20.6210 21.0567 21.6327 22.4774 24.0153

20.6210a 21.0567a 21.6327a 22.4774a 24.0153a

0.4 19.1138 19.5166 20.0500 20.8343 22.2710

19.1138a 19.5166a 38.4920a,b 20.8343a 22.2710a

0.6 17.4879 17.8557 18.3441 19.0649 20.3953

17.4879a 17.8557a 18.3441a 19.0649a 20.3952a

0.8 15.7473 16.0731 16.5132 17.1668 18.3871

15.7427a 16.0725a 16.5123a 17.1657a 18.3855a

(c) Third natural frequency

0.0 61.6972 62.1525 62.7763 63.7515 65.7470

61.6972a 62.1525a 62.7763a 63.7515a 65.7470a

0.2 56.1923 56.6304 57.2258 58.1467 60.0096

56.1923a 56.6303a 57.2257a 58.1466a 60.0094a

0.4 50.3537 50.7715 51.3348 52.1965 53.9177

50.3537a 50.7714a 51.3346a 52.1963a 53.9173a

0.6 44.0252 44.4180 44.9437 45.7391 47.3066

44.0248a 44.4175a 44.9432a 45.7384a 47.3051a

0.8 36.8955 37.2558 37.7358 38.4555 39.8568

36.8846a 37.2439a 37.7223a 38.4392a 39.8336a

aResults of Ozgumus and Kaya (2006)
bThe trends in the second frequency reported by Ozgumus and Kaya (2006) should
exhibit decreasing trend with an increase in taper ratio. However, at τb= τh= 0.4,
a higher value is reported. It is opened that it is a typographical error
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A xð Þ ¼ A0 1−τw
x
L

	 

1−τh

x
L

	 

ð8Þ

Iy xð Þ ¼ I0y 1−τw
x
L

	 

1−τh

x
L

	 
3
ð9Þ

where τw and τh are the width taper ratio and height
taper ratio respectively and are defined as

τw ¼ 1−
w
w0

� �
ð10Þ

τh ¼ 1−
h
h0

� �
ð11Þ

where A0 and I0y are area of cross section and area mo-
ment of inertia of the beam at the root of the tapered
beam respectively and are defined as

A0 ¼ w0h0 ð12Þ

I0y ¼ b0w3
0

12
ð13Þ

Kinetic energy of the system
The velocity of a generic point P can be obtained as

v
→P ¼ v

→O þ
Ad→p
dt

þ ω
→A� p

→ ð14Þ

where v
→
O is the velocity of point O that is a reference

point identifying a point fixed in the rigid frame A; ω→ o

vector P
→

in the reference frame A and the terms P
→
, v
→
o,

and ω
→
A can be expressed as follows

p→¼ xþ uð Þ̂i þ v̂j ð15Þ

v
→O ¼ rΩĵ; ð16Þ

ω
→A ¼ Ωk̂ ð17Þ

v→
p ¼ _u−Ωvð Þ̂i þ _v þΩ r þ xþ uð Þ½ �̂j ð18Þ

where ι̂ , ĵ, and k̂ are orthogonal unit vectors fixed in A, r is
the distance from the axis of rotation to point O (i.e., radius
of the rigid frame), and Ω is the angular speed of the rigid
frame. Using Eq. 14, the kinetic energy of the rotating beam
is derived as

Ek ¼ 1
2

ZL
0

ρ zð ÞA xð Þv→ p
:v
→ pdx ð19Þ

In which, A(x) is the area of cross section of the ta-
pered beam, P(z) is the mass density, and L is the length
of the beam.
Equation of motion
Substituting Eqs. 2 and 3 into Eqs. 5 and 19 and taking
partial derivatives of Ek and Es with respect to qij and qij,
neglecting the higher order non-linear terms, the equation
of motion for the tapered beam is formulated using the
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Lagrange’s method. The Lagrange’s equation of motion for
free vibration of distributed parameter system can be writ-
ten as

d
dt

∂Ek

∂ _qi

� �
−
∂Ek

∂qi
þ ∂Es

∂qi
¼ 0 i ¼ 1; 2; 3 μ ð20Þ

The linearized equations of motion can be obtained as
follows

Xμ1
j¼1

"
ρ zð Þ

ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 

ϕ1iϕ1jdx

0
@

1
A

€q1j−2Ω ρ zð Þ

ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 

ϕ1iϕ2jdx

0
@

1
A _qij

−Ω2 ρ zð Þ

ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 

ϕ1iϕ1jdx

0
@

1
Aq1j

þ E zð Þ

ZL
0

I0z 1−τb
x
L

	 
3
1−τh

x
L

	 

ϕ

0
1iϕ

0
1jdx

0
@

1
Aq1j

¼ Ω2ρ zð Þ

ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 

xϕ1idx

þΩ2ρ zð Þ
ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 

ϕ1idx

ð21Þ
Table 2 Variation of the first three non-dimensional natural frequen
hub radius parameter, δ (τb = 0, τh = 0.5)

δ γ First frequency Second frequency

Present
approach

Ref. (Ozgumus and Kaya
2006)

Present
approach

Ref
200

0.0 1 4.017 3.986 18.501 18.

2 4.547 4.436 19.045 18.

3 5.308 5.092 19.917 19.

4 6.211 5.878 21.077 20.

2.0 1 4.482 4.386 18.974 18.

2 6.033 5.742 20.819 20.

3 7.955 7.452 23.562 22.

4 10.027 9.310 26.918 25.

0.5 1 4.138 4.090 18.621 18.

2 4.961 4.797 19.504 19.

3 6.082 5.777 20.892 20.

4 7.359 6.905 22.689 22.

1.0 1 4.256 4.191 18.739 18.

2 5.343 5.132 19.953 19.

3 6.766 6.386 21.821 21.

4 8.346 7.793 24.187 23.
Xμ3
j¼1

"
ρ zð Þ

ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 

ϕ3iϕ3jdx

0
@

1
A€q3j

þ E zð ÞI0z
ZL
0

1−τb
x
L

	 

1−τh

x
L

	 
3
ϕ

00
3iϕ

00
3jdx

0
@

1
Aq3j

þΩ2

(
r ρ zð Þ

ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 

L−xð Þϕ 0

3iϕ
0
3jdx

0
@

1
Aq3j

þ ρ zð Þ

ZL
0

A0 1−τw
x
L

	 

1−τh

x
L

	 
 1
2

L2−x2
� �

ϕ
0
3iϕ

0
3jdx

0
@

1
Aq3j

)#
¼ 0

ð22Þ

where a symbol with double prime (″) represents the
second derivative of the symbol with respect to the inte-
gral domain variable.

Dimensionless transformation
For the analysis, Eqs. 21 and 22 may be obtained in di-
mensionless form by introducing following dimension-
less variables in to the equations:

τ ¼ t
T

ð23Þ

ξ ¼ x
L

ð24Þ

θj ¼
qj
L

ð25Þ
cies, with respect to the rotational speed parameter, γ, and the

Third frequency

. (Ozgumus and Kaya
6)

Present
approach

Ref. (Ozgumus and Kaya
2006)

474 47.448 47.417

936 47.995 47.871

683 48.891 48.619

685 50.117 49.645

879 47.939 47.830

473 49.902 49.486

879 52.995 52.120

866 57.013 55.581

576 47.571 47.521

332 48.480 48.281

531 49.953 49.520

099 51.940 51.201

677 47.694 47.624

720 48.959 48.686

343 50.990 50.403

425 53.692 52.706



Fig. 2 Effect of taper ratio and power law index on flapwise
bending natural frequencies
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δ ¼ r
L

ð26Þ

γ ¼ TΩ ð27Þ
where τ, δ, and γ refer to dimensionless time, hub radius
ratio, and dimensionless angular speed, respectively.

Analysis of flapwise bending natural frequencies
Equation 22 governs the flapwise bending vibration of
the double-tapered rotating beam which is not coupled
with Eq. 21. With the assumption that the first stretch-
ing natural frequency of an Euler beam far separated
from the first natural frequency, Eq. 21 is ignored in
present analysis. Equation 22 involves the parameters L,
Ω, x, E, and P , which are the properties of the beam.
After introducing the dimensionless variable from

Eqs. 23, 24, 25, 26, and 27 in Eq. 22, the equation results

Xμ3
j¼i

" Z1
0

1−τwξð Þ 1−τhξð Þψ3iψ3jdζ

0
@

1
A€θ2j

þ
Z1
0

1−τbξð Þ 1−τhξð Þ3ψ 00
3iψ

00
3jdζ

0
@

1
Aθ3j

þγ2

( Z1
0

δ 1−τwξð Þ 1−τhξð Þ 1−ξð Þψ 0
3iψ

0
3jdζ

!
θ3j

þ
 
1
2

Z1
0

1−τwξð Þ 1−τhξð Þ 1−ξ2
� �

ψ
0
3iψ

0
3jdζÞ

!
θ3j

)#
¼ 0

ð28Þ
where

T ¼ ρA0L4

E zð ÞI0y

� �1
2

ð29Þ

Equation 28 can be written as

Xμ3
j¼1

M33
ij
€θ3j þ KB3

ij θ3j þ γ2 KG3
ij −M33

ij

	 

θ3j

h i
¼ 0 ð30Þ

where

Mab
ij ¼

Z1
0

1−τwξð Þ 1−τhξð Þψaiψbjdξ ; ð31Þ
Table 3 Properties of metallic (steel) and ceramic (alumina)
materials

Properties of materials Steel Alumina (Al2O3)

Young’s modulus E (GPa) 214.00 390.00

Material density ρ (kg/m3) 7800.00 3200.00
KBa
ij ¼

Z1
0

1−τbξð Þ3 1−τhξð Þψ00
aiψ

00
bjdξ ð32Þ

and

KGa
ij ¼

Z1
0

δ 1−τwξð Þ 1−τhξð Þ 1−ζð Þψ 0
aiψ

0
bjdζ

þ 1
2

Z1
0

1−τwξð Þ 1−τhξð Þ 1−ζ2
� �

ψ
0
aiψ

0
bjdζ

ð33Þ

where ψai is a function of ξ that has the same functional
value of x.
From Eq. 30, an eigenvalue problem can be derived by

assuming that θs are harmonic functions of τ expressed as
Fig. 3 Effect power law index on lowest three flapwise bending
natural frequencies versus width taper ratio



Fig. 5 Effect of taper ratio and power law index on flapwise bending natu

Fig. 4 Effect of power law index on lowest three flapwise bending
natural frequencies versus height taper ratio
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θ ¼ ejωτΘ ð34Þ

where j is the imaginary number, ω is the ratio of the
flapwise bending natural frequency to the reference fre-
quency, and Θ is a constant column matrix characteriz-
ing the deflection shape for synchronous motion and
this yields

ω2MΘ ¼ KCΘ ð35Þ

where M is mass matrix and KC is stiffness matrix,
whose elements are defined as

Mij ¼ M33
ij ; ð36Þ

KC
ij ¼ KB3

ij þ γ2 KG3
ij −M33

ij

	 

ð37Þ

Results and discussion
The procedure presented above for free vibration ana-
lysis of a double-tapered beam is demonstrated through
numerical examples.
ral frequencies versus angular speed (τw > τh)
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The results from the present modeling method have
been obtained considering ten assumed modes com-
pared with those reported by Ozgumus and Kaya (2006)
using the differential transform method. The influence
of taper ratios on the first three fundamental frequencies
is presented in Tables 1 and 2 and the results are
compared.
From the data, it has been observed that there is

nearly one-to-one correspondence between the results
obtained from the current approach and those reported
based on the differential transform method.
In view of this observation, it is opined that the current

approach is in order and has been adopted for further ana-
lysis in this study.
Further analysis has been carried out on double-tapered

functionally graded beam made of steel as metallic con-
stituent and alumina as ceramic constituent whose mech-
anical properties are given in Table 3. The dimensional
parameters length = 1000 mm, breadth = 20 mm, and
height = 10 mm are considered for the analysis.
The frequencies are evaluated with ten assumed modes

to obtain the converged bending natural frequencies. As
Fig. 6 Effect of taper ratio and power law index on flapwise bending natu
the frequencies obtained with number of modes greater
than ten did not show any significant improvement in
the results, the number of assumed modes is restricted
to ten only.
The effect of power law index and taper ratios on flap-

wise bending natural frequencies of a stationary func-
tionally graded double-tapered beam is presented in
Fig. 2. It is observed that the three frequencies decrease
with an increase in power law index, n, and when the
beam composition approached a more metallic state, the
rate of decrease in these frequencies is predominant up
to a certain n value, thereafter the frequencies are rela-
tively un-effected by increase in n value at all taper ratios.
The variation in flapwise bending natural frequencies with
the increase in taper ratios is decreasing at all power law
indices in all modes of vibration, as the change in taper ra-
tio alters the stiffness of the beam.
The effect of taper and power law index on frequencies

of a single-tapered beam is studied. The variation of flap-
wise bending natural frequencies of the functionally
graded rotating stationary beam with respect to width and
height taper ratios has been presented in Figs. 3 and 4.
ral frequencies versus angular speed (τw < τh)
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For all the values of power law index, all frequencies
are observed to increase with the increase in height
taper ratio and the first flapwise frequency is observed
to increase while a decreasing trend has been observed
in case of higher frequencies with an increase in width
taper ratio. It is also observed that, at higher values of
power law index, the variation of flapwise bending nat-
ural frequencies with a variation in width and height
taper ratios tends to reduce.
The influence of angular speed on flapwise bending

natural frequency for different taper ratios and power
law indices is presented in Figs. 5 and 6. It has been ob-
served that the first frequency has a lower magnitude for
uniform beam compared to that for tapered beam and a
reverse trend has been observed in respect of higher
order frequencies for all the taper ratios of the beam. It
is further observed that the variation in frequencies is
predominant when τw < τh as compared to the case of
τw > τh though the area of beam cross section is the
same in both cases.
Fig. 7 Effect of hub radius ratio and taper ratio on flapwise bending natura
It has been observed that for different values of taper
ratios and power law indices, the fundamental frequen-
cies are diverging with the increase in angular speed and
all higher order frequencies are observed to be conver-
ging. However, at a given speed, the frequencies decrease
with an increase in power law index.
It is also observed that the influence of taper ratio on

fundamental flapwise bending natural frequency is in-
creasing with the increase in angular speed and the in-
fluence is less on higher modes of vibration. The power
law index has negligible influence on the trend of flap-
wise bending natural frequencies with the increase in an-
gular speed for different taper ratios which is evident
from similarity of variation pattern for solid (n = 0) and
that for dashed (n = 2.0) and dotted (n = 4.0) lines for all
modes of vibration. These trends should be expected
that the tapered beams under consideration would be-
have differently, as the stiffness at the root and load
variation along the length of the beam depend on the
taper ratio.
l frequency versus angular speed
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The effect of hub radius ratio and beam taper ratio on
flapwise bending natural frequencies of the rotating ta-
pered beam is presented in Fig. 7. In general, the flap-
wise bending natural frequencies increase with the
increase in angular speed. From the figure, it is observed
that the difference in frequencies for the two geometries
of the beam is more at lower speeds and is decreasing as
the speed increases. It may be also noted that the rate of
increase in frequencies increase with an increase in hub
radius ratio and the increase in ratio of τb/τh. The hub
radius ratio could not influence the rate of increase of
flapwise bending natural frequency with the increase of
angular speed. This is evident from uniformity in the
gap between the solid line and dashed lines. These
trends should be expected from the increase in angular
speed, and hub radius leads to stiffening effect of rota-
tion and increase in taper ratio results to softening effect
resulting from the decrease of the cross-sectional area.

Conclusions
The free flapwise bending vibrations of a rotating ta-
pered beam are investigated in this work. The equations
of motions are derived using hybrid deformation variables
employing Lagrange’s approach. Rayleigh-Ritz method is
used to evaluate the frequencies of the beam. Linear taper-
ing in breadth and depth directions is considered for the
analysis. Variation in taper ratios affects the frequency
parameters of the beam. The frequency parameters are
observed to increase with the increase in hub radius
parameter. The power law index has negligible influence
on the trend of flapwise bending natural frequencies with
the increase in angular speed for different taper ratios.
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