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Abstract

Background: Ultrasonic waves have been used as a nondestructive testing tool to evaluate defects in steel mill
products. Although an ultrasonic wave has the capability to detect defects, the type classification of defects and
material characterization of components continue to be challenging tasks. The aim of this paperis to develop an
identification method to determine the elastic properties of an inclusion.

Methods: A particle filter (PF) is applied to identify the wave velocity and density of an inclusion. The PF is a data
assimilation technique that is based on a Bayesian approach, and requires a reliable simulation tool to describe the
system and measurements.

Results: The estimated value by PF showed good convergence to the true value of the wave velocity anddensity of
the inclusion.

Conclusions: By using a finite integration technique as the simulation tool, the PF can estimate the wavevelocity and
density of the inclusion in steel accurately and successfully.
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Background

Detecting inclusions such as acid slags in steel mill prod-
ucts without causing damage is important for guarantee-
ing their quality and performance. Ultrasonic waves are
widely used to detect inclusions, and the size and location
of the inclusions can be evaluated from the flight time and
amplitude of the scattered wave (Sachse 1975; Bifulco &
Sachse 1975). In general, an ultrasonic signal is affected by
changes in size and shape as well as the elastic properties
of the inclusions. Over the past few decades, many studies
on material characterization using ultrasonic waves have
been reported. A technique to determine the grain size
and homogeneity of materials using backscattered ultra-
sonic waves was proposed by Willems and Goebbels
(Willems & Goebbels 1981). Castagnede et al. showed the
decision method to determine the elastic constants in
solid using frequency shift information and the velocity of
an ultrasonic wave (Castagnede et al. 1990). Luo and
Bungey used surface waves to determine the Young
modulus and Poisson ratio of concrete materials (Luo
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& Bungey 1996), and Rogers utilized the phase velocity
of Lamb waves for the estimation of the elastic con-
stants in plates (Rogers 1995).

A state-space approach (Gandossi & Simola 2006; Khan
& Ramubhalli 2008; Kaipio & Somersalo 2005) based on
Bayesian theory has been applied for the identification
of defect properties. The Kalman filter (Kalman 1960)
is a Bayesian filtering method that can estimate the state
variables in a linear dynamic system. The Kalman filter was
also extended for solving various linear problems (Fahrmeir
1992; Julier & Uhlmann 1997). Meanwhile, filtering algo-
rithms such as the Monte Carlo filter (Kitagawa 1996) and
the Bayesian bootstrap filter (Gordon et al. 1993) were
proposed for problems with a nonlinear system. The Monte
Carlo and Bootstrap filter methods express the state vari-
ables using random data sampling and associated weights.
These methods are often referred to as particle filters
(Kaipio & Somersalo 2005).

In this paper, a particle filter (PF) is applied for the iden-
tification of the elastic properties, wave velocity, and dens-
ity of an inclusion in a steel mill component. The PF can
numerically solve these identification problems to modify
the state variable using available observation data. The PF
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is used in conjunction with a reliable numerical simulation
model that describes ultrasonic wave transmission and
reception in ultrasonic testing (UT). Here, ultrasonic sig-
nals are calculated with a finite integration technique
(FIT) (Fellinger et al. 1995; Schubert 2004). We verify the
effectiveness of the PF for UT through the demonstrations
of the elastic parameters identification. In this paper, shear
horizontal (SH) ultrasonic waves are used for the identifi-
cation of wave velocity and density of an inclusion.

Method

Particle filter (PF)

The PF aims to estimate the state variables x, for time
¢t while incorporating measured variable data y,. Gener-
ally, the state variables «; are hidden in the measured
data. The relationship between the state variable vector
x, and measured data y, is represented by the meas-
urement model as

V=M (xt\t—l(i)) + Wt(i) , Wi NN(K7 UZ) (1)

where w, denotes the measurement noise which is dis-
tributed with a mean of x and a variance of ¢* The
system model which describes the next state vector
Xye; is written by using the previous state vector x;;
as

xt‘t_l(i) = ft (xtfl(i)) + Vt<i) , W NI\[(K7 02) (2)

where v, represents the system noise. The functions %
and fin Eqgs. (1) and (2) are known. In the PF, a total of
N samples (particles) are used to show the probabilistic
density of x, and the particles are labeled with
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superscripts as ), &?, AN At every step, the im-

portance likelihood A, of each particle is calculated as

exp [} (2401 0)) R (- (1))

Aﬁ(!’) — _
(2)" R, |

(3)

where m indicates the number of dimensions of the
vector x, and R represents the variance-covariance
matrix. The flow of calculation on the PF process in this
paper is as follows:

A. x% : Initial particles are randomly generated.
B. Fort=1,..., T, steps (a), (b), and (c) described
below are carried out.
(a) For each particle i, perform the following
sequence:
1. Generate the system noise randomly : v{”
2. Predict the next state variable : xg)t 1=/ D) +
3. Calculate the likelihood of the particle : 1
(b) Compute the summation of the likelihood as

A0 (4)

-

S =
j=1

(c) Sample N times with replacement from the set
of particles x{ according to the following
normalized importance likelihood

B At(i)

B =5 (5)

The state vectors are modified each time and updated.
As shown in Fig. 1, the particles with low likelihoods are

i=

i=2

i=1

<

Xt
? Update

Fig. 1 Flowchart of the prediction and resampling process in the particle filter




Ibrahim et al. International Journal of Mechanical and Materials Engineering (2015) 10:23

eliminated. On the other hand, those with high likeli-
hood remain and then split for the generation of new
particles. This procedure is referred to as sequential im-
portance resampling (SIR). In the SIR, the expected sam-
pling value of each particle is expressed as NB¥. Therefore,
the ratio of the eliminated particle to the predicted parti-
cles {xm,l(i) }f\[l can be expressed as /)’(i) <1—/)’<i>) /N. It

should be noted that a small sample number N may cause
a large variance of the particle.

The selection of the number N of particles is a key
factor for the efficient and accurate identification in the
PFE. The computational load and the convergence of the
filter depend on this number. Most applications select a
fixed number of particles in advance, using ad hoc criteria
or statistical methods (Boers 1999).

Finite integration technique (FIT)

A numerical tool to calculate the ultrasonic signal is intro-
duced in the PF. Here, we utilize a FIT for modeling SH
wave transmission and reception (Nakahata & Kimoto
2012). In this section, we briefly summarize the formula-
tion of the FIT. Cartesian coordinates (x;, x,, x3) are con-
sidered, and the anti-plane direction is set to the x3-axis.
The particle velocity is indicated as u3, and the shear
stresses are 737 and 13,. The equation of motion and the
constitutive law in the integral form are expressed as

% Vp(x)V3 (x,8)dV(x) = /avrgl(x, t)n (x) (6)
+ 32(%, t) 12 (%) dc(x)
0 T3q(%, £)

V(x)

/a.vs»(x, ng(x)de(x)  (a=1,2

J
(7)

where p denotes the mass density, u represents the shear
modulus, and # denotes the outward normal. The shear

ot |y u)

Page 3 of 7

wave velocity in a solid is expressed using the mass
density and shear modulus as

CT:\/E
P

Equations (6) and (7) are discretized with integration
cells of small squares as shown in Fig. 2. The stress com-
ponents 73; and 73, are allocated at half-time steps,
while the velocity v; is allocated at full-time steps. The dis-
cretization in the time domain is based on a leap-frog
time-marching scheme. Let V3, T3;, and T3, be computa-
tional arrays to store the solutions of v, 731 and 73;, re-
spectively. The updating process in Egs. (6) and (7) can be
expressed as

A | A |

V3<Z+E7J+E)CV3(L+§7]+§)
. ,o 1 R |
+5[T31<l+1,]+§)—T31<l,]+§)

+T32< )—TSZ(H%J)]

9)
| |
T31<t,]+§)cT31(z,/+§)
+el[Vs<i+1,/‘+1>—vg<i—1,;‘+1>}
2 2 2 2
T32(L+1,]>CT32(l+1,]>
2 2
1 1)}

o101 . ,
+82[‘/3<l+§,]+§)—‘/3(l+§7]—2
(10)

(8)

'+_ 'J’_l
14
2’]

where § and ¢ are defined as

-0 >
A
i i+1/2 it

S . .
i O v3 integration cell
> | 131integration cell
T}l
A | 732integration cell
T32

Fig. 2 Spatial grid arrangement of Vs, Ts;, and Ts, in the FIT for an SH wave field
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Fig. 3 The inclusion embedded in the steel material and the transducer with 1.0 MHz center frequency that is located on top of the material
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Fig. 4 Visualization results of ultrasonic propagation calculated with the FIT. The colors indicate the magnitude of us
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Fig. 5 Identification result by the PF. The initial allocation of the particles was at regular intervals with respect to ¢y and p
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Therefore, Egs. (9) and (10) are executed by increment-
ing the time step At in sequence. Various boundary condi-
tions were explained by Schubert (Schubert 2004).

Since the FIT uses a unified grid size, an image-based
model can be applied. In image-based modeling, a nu-
merical model can be constructed from digital images
and then pixel data can be directly fed into the FIT
(Nakahata et al. 2014). In the PF, a number of simula-
tions have to be performed to model the functional / in
Eq. (1). Since a parallel calculation with graphics pro-
cessing units (GPUs) showed good speed efficiency in
our previous paper (Nakahata & Kimoto 2012), we use

the same calculation method in this study and acceler-
ate the FIT simulation.

Simulation of identification of elastic parameters
Consider two-dimensional (2D) problems of the identifica-
tion of the SH wave velocity ¢ and the density p of an
inclusion in a steel material. The state variables for this
problem are expressed as

X = [CT’p]T (12)

In this paper, these two variables are independent of
the time. Therefore, the system model can be expressed
using the prior state and system noise as

xt|t—1(i) = x4+ v, (13)

As shown in Fig. 3, we consider an inclusion with a
diameter of 10 mm, which is embedded in steel (c;=
3100 m/s, p = 7850 kg/m?®). An ultrasonic SH wave with
a center frequency of 1.0 MHz is transmitted into the
steel material from a transducer with a diameter of
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Fig. 6 Identification result by the PF. The initial allocation of the particles was at regular intervals with respect to only ¢y
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10 mm and located on the top surface. The frequency
spectrum of the reflected wave from the inclusion is
used in the PF identification.

Results and discussion

In Fig. 4, a numerical example of SH wave propagation
calculated with the FIT is shown. This figure illustrates
the magnitude of displacement u3(=vsdt) at certain time
steps. First, the incident wave is emitted from the trans-
ducer (Fig. 4a) and then scatters at the upper interface
between the steel and the inclusion. The scattered wave
is recorded at the same transducer as the first reflection
echo (Fig. 4c). Meanwhile, a part of the incident wave
propagates through the inside of the inclusion and then
scatters at the lower interface between the inclusion and
the steel. The scattered wave from the lower interface is
recorded as the second reflected wave (Fig. 4e).

In this study, the Fourier spectrum of the reflected echo
is used for the evaluation of the likelihood in Eq. (3). The
PF uses a large number (normally more than 1000) of par-
ticles. In this research, however, ten particles (N = 10) are
used due to the simplicity of the problem. As shown in
Fig. 3, we assumed that the true values of ¢;-and p of the
inclusion were 2400 m/s and 7000 kg/m?, respectively. Al-
though the measured signals were supposed to be used in
the identification process, we substituted the artificial sig-
nal obtained via numerical calculations for the measured
one. Figure 5 shows the transition of the ten particles
whose initial positions were located at regular intervals.
Initially, ¢ and p were distributed between 1000 and
2800 m/s, and 1000 and 10000 kg/m?> respectively.
From Fig. 5, it can be seen that most particles gath-
ered around the true value after several time steps.
The convergent point can indicate the true values of
c¢rand p of the inclusion.

Figure 6 shows another result of the PF that com-
menced with a different initial particle distribution. In
this case, we aligned initial particles at a regular interval
with respect to only cr. At first, czand p were distributed
between 1000 and 3000 m/s, and 4000 and 8500 kg/m®,
respectively. The calculation of the PF was terminated
after thirty calculation steps. Although good convergence
at early steps was not seen, the particles converged on the
true value eventually.

Conclusions

In this paper, we proposed an identification method for de-
termining the elastic parameters of an inclusion in a steel
material as an UT tool. A PF was applied to identify the
wave velocity and density in an inclusion. The PF is a data
assimilation technique based on a Bayesian approach.
In the PF, a FIT was used to assist the description
of the measurement model in UT. In the simulation,
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the estimated value of the wave velocity and density
showed good convergence to the true value.

In the future, we aim to validate our approach using
experimentally measured signals and apply it for the iden-
tification of multivariable parameters with a large number
of particles. Furthermore, we will apply our method to 3D
problems using a GPU-accelerated 3D FIT simulation.
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