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Deformation and stability of compressible
rubber O-rings
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Abstract

Background: In rubber elastic models it is generally assumed that the bulk modulus is infinite, resulting in a
material that does not change its volume and a pressure that cannot be evaluated from the material model.

Methods: We have developed a general procedure that incorporates a finite bulk modulus. Using the developed
framework accurate results can be obtained without the need for special finite elements. It gives the correct results
even in the limit of infinite bulk modulus.

Results: It was shown that material compressibility causes additional stresses mostly associated with an additional
hydrostatic pressure. It was also demonstrated that once a bulk modulus is included in the constitutive model,
stability analyses of rubber-like materials subject to large deformation become numerically stable and accurate.
Hence, it is essential to use compressibility with neo-Hookean solids for accurate stress and lifing predictions. The
role of twist in the formation of stress-strain states in rubber O-rings has been evaluated. Such a twist causes elastic
instabilities resulting in highly deformed O-ring shapes. Numerical analysis using compressible material models
predicted the stable deformed states that O-ring do not remain circular. The ring is buckled and reaches a “chair” –
type non-planar shape just beyond inside-out twist.

Conclusions: The results indicate that elastic material volume change causes additional stresses mostly associated
with an additional hydrostatic pressure. Simulations using various rubber elastic models showed that allowing
volume changes allows accurate stress state prediction, reduces numerical difficulties and improves the numerical
stability.
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Background
Rubber-like materials used in the engineering practice often
undergo large deformations. Due to superior elastic proper-
ties, rubber remains elastic up to very large strain and
therefore can be considered as a classical example of finite
strain elasticity. A comprehensive survey of variational
principles, which form the basis for computational methods
and specifically finite element analyses used in this paper,
has been completed by Reed and Atluri (1983), Atluri and
Cazzani (1995) which also includes mathematical formal-
ism needed to account for large deformation rotations. The
strains are well represented by a deviatoric deformation,
and show little, or no, volume deformation. Hence most
elastic material models neglect volumetric deformation

(e.g., see Treloar 1975 or Simo and Taylor 1991) by assum-
ing that the bulk modulus is infinite. Both theoretical and
experimental results (Arruda and Boyce 1993; Ali et al.
2010; Ogden 1972, and others) demonstrate that the bulk
modulus can be several orders of magnitude larger than the
shear modulus justifying the assumption that shear strains
will be much larger than the relative volume change. In
such cases it can be assumed that the deformations under
loading will be governed by the shear response alone. In
other words, elastomeric characterization for these materials
may be simplified and defined as the ideal incompressibility
with infinite bulk modulus, K. In reality, rubber materials
are not completely incompressible under large strain (Bonet
and Wood 1997; Gurvich and Fleischman 2003). Incorpor-
ation of relatively small compressibility in the material
models reflects physical reality and also allows significant
improvements in the finite element method numerical
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predictive procedure. Some reliable and accurate approaches
to the experimental evaluation of rubber parameters, finite
compressibility, and corresponding results are presented in
Gurvich and Fleischman (2003), Gent (2005), Kamiński and
Lauke (2013).
The assumption of no volume change leaves the pressure

(i.e., the hydrostatic stress) as an unknown that must be
found without access to a material response model.
Generally, the pressure is found by including it as an
unknown at the nodes of a finite element code, which forces
the use of special elements with an additional degree of
freedom. Of course, with the additional unknown, an
additional equation is required to address the fact that there
is no volume change. Hence, typical rubber elastic models
in finite element codes use special elements for rubber-like
materials where the shear modulus is much less than the
bulk modulus. Some examples of the finite elements tech-
nique with attention to the stability analysis are given in
Sussman and Bathe (1987), Duffet and Reddy (1986), and
Reese and Wriggers (1995).
In order to eliminate these numerical difficulties, it would

be desirable to represent rubber elasticity with a model that
can approach the limit of infinitesimal shear modulus with
respect to bulk modulus, because typical codes already use
shear G and bulk K moduli. Such a formulation would re-
main accurate for very large bulk-to-shear modulus ratios.
This has been the trend recently adopted in MARC (2005),
ANSYS, Inc (2004), ADINA (2008). In Ali et al. (2010) a
number of compressible material models is presented. Yet
most finite element codes contain special zero volumetric
strain elements for simulating the response of polymer
structures. These models can be combined with other
features including structural stability or buckling. Several
methods have been suggested to overcome, so-called finite
element locking problems (Dolbow and Belytschko 1999)
and other numerical instability issues (Reese and Wriggers
1995; Pantuso and Bathe 1997; Gent 2005), which makes it
difficult to distinguish physical instabilities from numerical
ones. The instabilities place a mathematical constraint that
results in nearly singular equations even for structures
under conditions far from any buckling load.
In this paper, we propose a method that allows modeling

rubber-like materials to approach volume preserving
constitutive models gradually. This greatly simplifies the
analysis of polymer components. We then apply the
technique to a curious instability of polymer O-rings under
combined stretch and twist deformation where the possibil-
ity of multiple stable states exists.
Most constitutive models are developed either from

specific molecular models or from empirical evidence (e.g.,
see Treloar 1975; Simo and Taylor 1991; Arruda and Boyce
1993; Ogden 1972; Ali et al. 2010; Zéhil and Gavin 2013;
Ghaemi et al. 2006; Tabiei and Khambati 2015). We have
developed a general procedure that includes small volume

changes and, therefore, reduces in the limit to the case of
an infinite bulk modulus. We compare the results obtained
using compressible and incompressible models and evalu-
ate the predicted stress state and stability sensitivity to the
material compressibility. Our general approach allows
models generalization to include volumetric deformations
in a straightforward manner. In this paper, we use the
derivatives of the energy function since the principle
stresses si can be expressed in terms of the energy, W, and
deviatoric stretch ratios, λi, (see, for example, Chadwick
and Ogden 1971; Reese and Wriggers 1995). Note that for
incompressible materials such a derivative is defined with
the unknown additive term for hydrostatic pressure.
A very important engineering problem is estimating the

deformation and stresses in polymer O-rings. O-rings are
sealing elements that can be used in demanding seal appli-
cations over a broad pressure and temperature range. They
are easy to assemble, and readily available but require some
attention to prevent application problems. See, for example
(Ritcher 2016), for a list of specific O-rings failure traces
with the damage-causing mechanisms. Polymer O-rings are
widely used as seal elements in engineering practice in
general and in airplane engines in particular and their
deformation is very important, especially due to the fact
that seal breakage could lead to the severe oil leakage. As
an example from the aerospace industry, failure of the seals
could result in engine shutdown and flights that must con-
tinue on one remaining engine. During installation, O-ring
seals are usually stretched and twisted. Twist can result in
an elastic instability for which the shape of the deformed
O-ring has more than one equilibrium state. If the O-ring
is set on a rigid cylinder, its shape is defined and additional
stresses, sometimes very localized, arise. Any instability can
place the O-ring in a higher energy state than the original
zero deformation reference state that is nevertheless stable.
The deformed state of this elastic material causes residual
stresses well above what would be predicted for a lower
energy state which can lead to cracking of the O-ring. Of
course, additional thermal stresses may appear due to
heating. This is especially important because the thermal
expansion coefficient for rubber-like materials is negative,
and the heating of the installed ring will cause additional
non-proportional stretching. Hence, for example, in gas
turbine engines improper installation can lead to premature
seal failure followed by an emergency engine shut down.
Our objective is to develop a mathematical procedure

that can be used to naturally extend volume preserving
constitutive models to include volumetric strains and
eliminate the need for special computational code for
rubber-like materials. It was demonstrated that once a bulk
modulus is included, analyses for predicting the stability of
rubber-like materials subject to large deformation become
transparent, since the volumetric deformation is now natur-
ally included. In this paper, it is shown that small variations
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in the compressibility (bulk modulus) might lead to the
significant changes in predicted stress-strain state, which is
close to the results of Gent et al. (2007) and Destrade et al.
(2012). Therefore, the use of compressibility with neo-
Hookean solids is essential.
We begin our discussion with a detailed presentation

of a method for extending volume preserving models to
models with volumetric deformations. The extension
naturally includes the original volume preserving model
as a limiting case.
The following section summarizes a generic method for

including a bulk modulus in rubber elastic materials. For the
sake of clarity, we use the Mooney-Rivlin constitutive model
in this section to illustrate the approach. In Section 3, we
then include several examples illustrating the reduction of
the model to commonly used engineering problems. In
Section 4, the deformation and the multiple stable states
that can exist in polymer O-rings are discussed. This section
includes a discussion on the elastic stability of O-rings. We
demonstrate that including volumetric deformations in the
material model significantly increases the accuracy of the
predictions. We finish with some concluding remarks.

Methods
Governing equations
Rubber-like materials possess relatively low shear moduli
while supporting extremely large elastic strains. This makes
standard small strain elasticity inappropriate for analyzing
real components such as O-rings. Even for small strain
cases, the equations of linear elasticity need to be modified
since the bulk moduli are much larger than the shear mod-
uli. Note that indicial notation will be used throughout
where repeated indices are assumed to be summed over
the number of dimensions, and commas indicate partial
derivatives (or more generally covariant derivatives). Using
indicial notation, the equilibrium equations for incompress-
ible materials can be summarized, from Treloar (1975), as:

sji;j þ P;i ¼ 0; ð1Þ

where sji is the deviatoric stress components, and P will
later be shown to be related to the hydrostatic pressure.
The stress is decomposed into its hydrostatic and deviatoric
stress to allow analyses for an infinite bulk modulus case.
The quantity P is required since the material is assumed to
be incompressible (i.e., ui,i = 0, where ui is the displacement
vector). Assuming incompressibility adds a constraint, but
this removes any reference to the hydrostatic pressure mak-
ing it an additional unknown that must satisfy the equilib-
rium equations. One may see that the system (1) can be
generally resolved within an additive parameter P as in the
description of viscous flow. In other words, when compared
to classical elasticity the pressure is now an independent
variable, and there is a constraint on the displacement

gradient. Many finite element codes use special elements
for simulations using the above equations. Such a model
could be numerically unstable but in most practical cases
the accuracy should be sufficient, if higher precision is used.

Modification of classical rubber elasticity
In this section, we will modify classical rubber elasticity to
include volume changes in a straight forward manner that
will remain valid for large strains. Since the shear strains
are large, kinematics is an important first step in the de-
velopment of a generic framework. The formulation in Eq.
(1) needs to be extended. We will remove the requirement
that ui,i = 0 by adding a change in volume to the governing
equations in a manner that still allows the user to proceed
to the limiting case of a volume preserving material. We
begin by decomposing the deformation gradient, F into a
rotation, R, and a symmetric right stretch tensor, U. The
stretch tensor can be decomposed into the product of a
dilation, Δ, and a deviatoric stretch, Λ, or

F ij ¼ RikUkj ¼ RikΔklΛlj: ð2Þ

The dilation is a diagonal tensor given by

Δij ¼ J1=3δij ð3Þ

where

J ¼ det Ff g ð4Þ

and, hence, det Λf g ¼ det Rf g≡1.
Kinematics and equilibrium are not sufficient to calculate

the stress in the structure; we also need a mechanically
motivated constitutive relationship for non-linear elasticity.
We will follow an approach described in Cassenti and

Staroselsky (2000) and Ghaemi et al. (2006). For simplicity,
without loss in generality, Mooney-like models will be
modified to include a finite bulk modulus. This modification
can be used to illustrate the procedure for including volume
changes that can approach, in the limit, the case of classical
rubber elasticity. For an isotropic compressible (J ≠ 1)
rubber-like material, the strain energy (W) can be written in
terms of the first invariant of the principal deviatoric strain
ratios (λ1, λ2, λ3) and the volume ratio (J) as

W ¼ 1
2
G λ21 þ λ22 þ λ23−3
� �þ 1

2
K J−1ð Þ2 ð5Þ

Note that the principal deviatoric stretch ratios are
(λ1, λ2, λ3) are the eigenvalues of Λ and J is the final-to-
initial volume ratio. The parameters G and K are the
elastic moduli, which will be shown later to be the shear
and bulk moduli, respectively. Let the principal stretch
ratios, μi be the eigenvalues of the right stretch tensor U
then from Eq. (2).
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μi ¼ J1=3 λii ¼ 1; 2; 3 ð6Þ

Recall that, since the deviatoric part of the deform-
ation is always volume preserving, the deviatoric stretch
ratios satisfy

λ1λ2λ3 ¼ 1 ð7Þ
and the right-hand stretch ratios (μi) include the volume
change (i.e., μ1μ2μ3 = J). After the rotation is removed,
the Biot stresses (sij), which are energy conjugate to the
right-hand stretch tensor, and, hence, the principal
stresses (s1, s2, s3) are conjugate to the principal stretch
ratios (μ1, μ2, μ3) therefore the incremental work done
by the stresses has the following form:

dW ¼ s1d J1=3λ1
� �

þ s2d J1=3λ2
� �

þ s3d J1=3λ3
� �

ð8Þ
By differentiation, the constraint (7) can be rewritten as

dλ1
λ1

þ dλ2
λ2

þ dλ3
λ3

¼ 0 ð9Þ

The constraint (9) is difficult to incorporate directly in
the constitutive equations, but if a cyclic change of vari-
ables is introduced as follows:

dλ1 ¼ λ1 dα2−dα3ð Þ;
dλ2 ¼ λ2 dα3−dα2ð Þ;
dλ3 ¼ λ3 dα1−dα2ð Þ

ð10Þ

where the new variable αi, can be used to replace the devia-
toric stretch ratio, the derivation is much clearer. Equation
(10) is the key to developing constitutive relations that can
gradually approach volume preserving representations.
Note that cyclic permutations show that only the differ-
ences in the differentials of αi are required in Eq. (10).
First, we expand the differentials in Eq. (8). Next, we substi-

tute for the deviatoric stretch ratios using Eq. (10) to obtain:

dW ¼ J1=3½s1λ1 dα2−dα3ð Þ þ s2λ2 dα3−dα1ð Þ
þ s3λ3 dα1−dα2ð Þ�
þ s1λ1 þ s2λ2 þ s3λ3ð Þ dJ

3J2=3

ð11Þ

The constitutive equation for the strain energy, (5),
can be used to find the change in the internal energy
stored in the material in the following way:

dW ¼ G λ1dλ1 þ λ2dλ2 þ λ3dλ3ð Þ þ K J−1ð ÞdJ ð12Þ
and must be equal to the work done by the stresses as
shown in Eq. (8). Substituting for the stretch ratios in Eq.
(12) and using expressions (10) we immediately obtain

dW ¼ G λ21 dα2−dα3ð Þ þ λ22 dα3−dα1ð Þ þ λ23 dα1−dα2ð Þ� �þ K J−1ð ÞdJ
ð13Þ

Since the quantities dαi and dJ are arbitrary, they must
apply in all possible deformation states. Since Eqs. (11) and
(13) are written for the same energy change, they imply

J1=3 siλi−sjλj
� � ¼ G λ2i −λ

2
j

� �
; i≠j; i; j ¼ 1; 2; 3 ð14Þ

And

λ1s1 þ λ2s2 þ λ3s3 ¼ 3J2=3K J−1ð Þ ð15Þ
Note that there are only two independent Eqs. in (14).

Equations (14) are satisfied by

si ¼ G
λi

J1=3
þ P

J1=3λi
ð16Þ

where the quantity P can be found by substituting Eq.
(16) into Eq. (15) to yield

P ¼ KJ J−1ð Þ− 1
3
G λ21 þ λ22 þ λ23
� � ð17Þ

For completeness, the principal Biot stresses for all
possible deformations, with finite bulk modulus, can
now be written as

si ¼ G

J1=3λi

2
3
λ2i −

1
3
λ2k−

1
3
λ2l

� 	
þ KJ2=3 J−1ð Þ

λi :

i≠k≠l; i; k; l ¼ 1; 2; 3

ð18Þ

Note that in Eq. (18), principal stresses are used, and
that the Biot is conjugate to the right-hand stretch
tensor. Equation 18 indicates that it is not the bulk
modulus, K, alone or the relative volume change, J-1,
alone that controls whether a constitutive law is volume
preserving, but the product of the bulk modulus and the
relative volume change that is important. For J = 1, and
K finite, that is the case of pure deviatoric deformation
but with volume changes possible, the sum of the
stresses in Eq. (14) indicates that the first term in Eq.
(18) is related to the deviatoric stress and, of course, the
second term is the hydrostatic component.

Examples
In this section, we examine the applicability of the derived
modification for constitutive laws in some classical exam-
ples. Throughout the next section, we assume a Mooney-
like model for the sake of simplicity.
Several examples can be used to illustrate the develop-

ment of constitutive relations for rubber-like materials. The
examples will show in a straight forward manner the ease
with which the material response can be developed for iso-
tropic materials with a large bulk modulus relative to the
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shear modulus. Three examples will be used: (1) small strain
response, (2) hydrostatic response, and (3) uniaxial response.

Small strain response
For small strains, let the principal deviatoric stretch ratio
be given by

λ1 ¼ 1þ e1; λ2 ¼ 1þ e2; and λ3 ¼ 1þ e3;

ð19Þ
where e1, e2, e3 << 1. Equation (7) to first order in ei
yields

e1 þ e2 þ e3 ¼ 0: ð20Þ
Let the volume ratio be

J ¼ V f

V i
¼ 1þ ΔV

V i
¼ 1þ v; ð21Þ

where Vf is the current volume element, Vi is the initial
volume, ΔV = Vf − Vi, and v ¼ ΔV

V i
<< 1 . Then to first

order in the strains expression (21) yields

si≈2Gei þ Kv for i ¼ 1; 2; 3: ð22Þ
Expression (22), together with Eq. (20) is the correct form

for small strains with a volume change and demonstrates
that G is the shear modulus while K is the bulk modulus.

Hydrostatic response
Next, let us consider the case of hydrostatic stress. Since
the deformation only includes volume change,

λ1 ¼ λ2 ¼ λ3 ¼ 1 ð23aÞ
and set

s1=J
2=3 ¼ s2=J

2=3 ¼ s3=J
2=3 ¼ p: ð23bÞ

Then from Eq. (17)

p ¼ K J−1ð Þ ð24Þ
is the hydrostatic tension. Note that

p ¼ s1= λ2λ3J
2=3

� �
¼ s2= λ3λ1J

2=3
� �

¼ s3= λ1λ2J
2=3

� �
;

ð25Þ
demonstrates that p is the hydrostatic stress with respect
to the current area.

Uniaxial response
An important example is that of uniaxial stress. Take the
stress to be along direction 1, then

s2 ¼ s3 ¼ 0: ð26aÞ
The stretch ratios perpendicular to direction 1 are, using

Eq. (7),

λ2 ¼ λ3 ¼ 1ffiffiffiffiffi
λ1

p : ð26bÞ

From Eq. (18)

J1=3λ2s2 ¼ 0 ¼ KJ J−1ð Þ−G
3

λ21−
1
λ1

� 	
ð27aÞ

Equation (27a) can be solved for J − 1 to yield

J−1 ¼ G
3KJ

λ21−
1
λ1

� 	
ð27bÞ

Substituting Eqs. (26) and (27) into Eq. (18) gives the
uniaxial stress as

s1 ¼ G

J1=3
λ1−

1

λ21

 !
ð28Þ

For the case of small volume changes Eq. (28) be-
comes, using Eq. (27b),

s1 ¼ G λ1−
1

λ21

 !
1−

G
9K

λ21−
1
λ1

� 	� �
: ð29Þ

Equation (29) agrees with the classical model (Treloar
1975) for incompressible rubber elasticity which corre-
sponds to the limit G/K→ 0.

Results and discussion
Deformation and stability of rubber O-rings
Polymer O-rings are widely used as seal elements in
engineering practice (see the picture in Fig. 1). During
installation, these rings are usually stretched and twisted.
We evaluate the role of axisymmetric torsion and twist
in the formation of stress-strain state in the ring.
This is related to the manufacturing process when the

ring may be installed inside-out due to twisting. For ex-
ample, if an O-ring is twisted about the major circumfer-
ence so that the outer major circumference is on the

Fig. 1 Original rubber O-ring seal
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inside, the O-ring will be in a state of unstable neutral
equilibrium. Similarly, if a uniform hydrostatic pressure is
applied, the volume change will be small, but, because of
the small shear modulus, non-uniformity in the loads or
the geometry can result in significant O-ring deforma-
tions. Both the twisting and pressure instabilities are geo-
metric and are important in predicting the final state.
Thus, the shape of the (twisted) deformed ring is not round
anymore (so called Michell’s instability (Goriely 2006).1 If
the ring is set on a rigid cylinder, its shape is defined and
additional stresses, sometimes very localized, arise that in
turn may lead to the ring cracking. We have analyzed two
related problems, namely, (i) homogeneous axisymmetric
twisting of the ring and (ii) the full three-dimensional
twisting-torsion problem for the ring. Under certain physic-
ally based assumptions, the first problem allows a closed-
form solution. The second problem is solved numerically
using the finite element technique. For the model calibra-
tion, we obtain an analytical solution for the axisymmetric
O-ring torsion problem (i) and compare it with the numer-
ical predictions and show that both results are accurate.
First of all, we start with the kinematics (i.e., the motion

of points in the material) and consider axisymmetric tor-
sion. We assume that during the deformation each cross-
section (circle with the radius r0) remains in its original
plane. We also assume that due to symmetry of the prob-
lem, the principal strains are in hoop, radial, and circum-
ferential directions. This greatly simplifies the conversion
from Green-Lagrange strain and second Piola-Kirchoff
stress to right-hand stretch and Biot (or Jaumann) stress.
Axisymmetric torsion as shown in Fig. 2 implies that the
primary principal strain and stress appear in the hoop
direction. During the rotation through the angle Θ, the
curve AA ′ (l = 2πR) moves to the curve BB ′ (l = 2π(R
+ ΔR)). One can see that the extension is Δλ = 2πΔR or λ1
= (R + ΔR)/R. The sign and magnitude of this deformation
depend on the position of point A (or angle α) and on the

position of point B (or angle Θ), as well as on radii R0 and
ρ, ρ ≤ r0. It is also important that, usually, the ratio r0=R0

is
much smaller than unity. Under these assumptions, the
stretch ratio μ1 = J1/3λ1 in the hoop direction is given by

μ1 ¼
1− ρ

R0
cos αþ θð Þ

1− ρ
R0

cosα
þ O

r0
R0

� 	2
 !

ð30Þ

By this point, we have not used any material-specific pa-
rameters or behavior. In order to calculate the state of the
O-ring, we introduce the specific stress-strain relations for
the analyzed materials (i.e., we introduce the constitutive
model). A good constitutive model should represent the
three-dimensional nature of stress-stretch behavior using
a minimal number of parameters to represent physically
the deformation process. The eight chain model of Arruda
and Boyce (1993) accurately captures the cooperative
nature of network deformation while requiring only two
material parameters, an initial shear modulus G and
limiting chain extensibility where the parameter N is the
number of chemical cross-links per length. This param-
eter is related to the locking stretch as follows: λL ¼

ffiffiffiffi
N

p
.

We modify this model by incorporating the term reflect-
ing the volume changes2 where the energy function (i.e.,
the Hemholtz free energy), W has been taken in the form:

W ¼ G
1
2

I1−3ð Þ þ 1
20N

I21−9
� �þ 11

1050N2 I31−27
� �þ…

� 	
þ 1

2
K J−1ð Þ2

ð31Þ

where I1 ¼ λ21 þ λ32 þ λ23 is the first invariant of the
deviatoric diagonal stretch tensor and K is a bulk modu-
lus. Next, if we consider, for simplicity, the case N =∞, it
would correspond to a one term non-volume preserving
material model.

Fig. 2 Cross-section and part of the twisted O-ring
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Material models, such as Eq. (31), allow the analysis of ar-
bitrary stress states, including ones for materials with an in-
finite bulk modulus. This makes possible a direct evaluation
of the effects of a finite bulk modulus. We calibrated an in-
compressible constitutive model by comparing the model
predictions against test results for simple tension up to 200%
deformation. As shown in Fig. 3, finite element uniaxial cal-
culations using parameters with values of G= 160 psi; N=
18 resulted in curve-fitting errors of less than 5% for the O-
ring material if considered. In order to match experimental
data, we also adopted the value of G

K ¼ 0:1= allowing com-
pressibility. The bulk modulus is ten times larger than the
shear modulus, and the volume change, J− 1, is small.
Our analysis of O-rings for axisymmetric torsion, a rota-

tional displacement was specified as shown in Fig. 2. We
have considered two model cases: compressible and incom-
pressible. The first model allows for the volume change,
which increases in the “tension” zone and decreases under
compression. From pure geometrical considerations, it is
easy to see that the volume ratio is given by J = μ1. Note
that the remaining two principal stretch ratios are unity
(i.e., μ2≡J

1/3λ2 = μ3≡J
1/3λ3 = 1) since there is no strain in the

plane of the cross-section. Using Eq. (18) and the fact that
the product of the deviatoric stretch ratios is unity
λ1λ2λ3≡1, we immediately obtain for the hoop Biot stress

s1
G

¼ 2
3
J1=3 1−

1

J2

� 	
þ K

G
J−1ð Þ ð32Þ

The graphs of stress calculations for two surface points
separated by 90° angle versus rotation angle of the O-ring

are shown in Figs. 4 and 5. Note that J is calculated based
on the hypothesis of cross-sections remaining planar.
The second case considered is based on the additional

assumption of incompressibility of rubber-like material. It
immediately leads to μi = λi, for all principal directions or in
other words it leads to J = λ1λ2λ3≡1. Since we have assumed
a uniaxial stress state, the hoop stretch ratio equals λ and
the remaining two principal stretch ratios can now be

found as 1=
ffiffiffi
λ

p
. The uniaxial stress is calculated by substi-

tuting for the stretch ratios in the expression (31) for the
elastic energy (the material constitutive model with J = 1)
and differentiating with respect to the stretch as follows:

s1
G

¼ λ2−
1
λ

� 	
þ 1
5N

λ2 þ 2
λ

� 	
λ2−

1
λ

� 	
þ… ð33Þ

The graphs of stress calculations based on these model
assumptions are also presented in Figs. 4 and 5 together
with finite element method results. This comparison be-
tween numerical and analytical solutions has been used to
verify the finite element model predictions. A finite elem-
ent code was used to perform numerical investigations.
Note that the MARC (2005) finite element code devel-
oped the governing equations using a virtual displacement
formulation based on the Green-Lagrange strain and the
second Piola-Kirchoff stress. Hence, equilibrium (i.e., the
conservation of momentum) is automatically satisfied. A
user-material subroutine was written to incorporate the
Aruda-Boyce model and a finite bulk modulus as in Eq.
(31). We compared the second Piola-Kirchhoff stress pre-
dictions (the conversion from Biot stress to second Piola-
Kirchoff, and the conversion from Green-Lagrange Strain

Fig. 3 Experimental and predicted true stress-strain curves for tension. Fitting of the test data has been done by Arruda-Boyce model with G = 160 psi
and N = 18
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to right-hand stretch are given in the Appendix) from the
code numerical simulations with the hoop stress s1 predic-
tions calculated according to formulae (32) and (33). The
comparisons shown in Figs. 4 and 5 have been performed
for two initial positions: the inside point X (α = 0) in Fig. 2
and for the point on the top of the ring (Y in Fig. 2, α =
90o). These results clearly indicate that material volume
changes cause additional stresses, mostly associated with

an additional hydrostatic pressure. As one may see from
these figures, kinematic boundary conditions imposed in
the finite element code are much closer to the first type of
the axisymmetric problems (Eq. (32)). The results show
that “inside-out” twist (Θ = 180°) causes maximum princi-
pal stress for the points laying on the horizontal plane (for
example point X in Fig. 2) and is in tension for the points
originally close to the O-ring center and compression for

Fig. 4 Normalized true stress vs. angle for inside-out rotation (point X at Figure 2) α = 0.

Fig. 5 Normalized true stress vs. angle for rotation of the point Y: α = π/2.
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the “outer” region. For points in the cross-section normal
to the O-ring plane, the most critical twist is Θ = 90°
where the maximum stress is about half of the inside-out
twist level, which coincides with our intuitive expectation.
Finally, we see that half of the O-ring torus is in tension,
and the other half is under compression. Of course, this is
just a reflection of the state of internal equilibrium.
We developed our simulations using the compressible

Aruda-Boyce model and applied it to the finite element
analysis of several full 3D loading conditions. The most
illustrative and interesting from an experimental point
of view case is twisting of one side of the O-ring while
the opposite part (180° apart) is to be held. This gener-
ates an extremely inhomogeneous deformation state.
One may see that the ring has a new equilibrium state
after a 180° rotation, and this equilibrium shape does
not remain round and has a so-called “chair”-type shape.
A comparison between FEM predictions and the actual
O-ring shape is shown in Fig. 6. It was suggested in
Cassenti and Staroselsky (2000) that the O-ring loses
stability when it is twisted by about two full turns. Our
numerical analysis and corresponding experiments (see
Fig. 6), however, demonstrated that even one full rota-
tion already causes the so-called Michell’s instability, and
the original ring obtains a non-round stable shape. In
addition, if the O-ring is held on its inside by a rigid
cylinder, extremely localized stresses will arise and could
lead to premature failure. The model predicts the
deformation extremely well. The maximum principal
stress reaches 0.35G at the fixed inner point. The stress
at the “moving” inner O-ring point is significantly
smaller as shown in Fig. 7a, b. Note the minor numerical
instability around the peak stresses in Fig. 7b.
Two cases of interest are: (a) O-ring is twisted at opposite

ends of the major diameter in opposite directions and (b)
O-ring is twisted at opposite ends of the major diameter in

the same direction. Figures 8 and 9 present the deformed
shapes with contours of the hoop stress along the major
axis. When the applied moments are in opposite directions,
the O-ring is curved up. If moments act in the same direc-
tion (Fig. 9), one end is up and the other down, exhibiting
an inflecting point. Also note that the stress contours are
discontinuous where the moments are applied. These stable
states are readily observed using common O-rings.
During service, especially in the engine applications, O-

rings are subject to the thermal exposure. Typically rubber
thermal expansion coefficients are negative and of the order
of α = − 200 ⋅ 10− 6K− 1. Thus, due to the temperature in-
crease, the rubber O-ring contracts generating additional
stretch δ = 1 + εtherm = 1 + |αtherm|ΔT. Therefore, for the
particular case of combined stretch and axi-symmetric tor-
sion it could be written:

μtotal ¼ 1þ δð Þμ1≈ 1þ δð Þ 1þ 2ε sin αþ θ
2

� �
sin θ

2

� �� �
;

where δ is the stretch and ε ¼ ρ
R0= . Note that we modi-

fied (30) using a Taylor expansion. For the general full
3D problem, when stretch principal extensions are not
parallel to the torsion-twist ones the problem is more
complicated and may be analyzed numerically.

Excessive temperature exposure can cause surface cracks
on the O-ring and also results in material properties deg-
radation and permanent deformation (Ritcher 2016). How-
ever, even performance under temperature variations below
acceptable temperature limits leads to crack formation, due
to high stresses caused by combined stretch and axisym-
metric torsion as shown above.

The critical load that O-ring can sustain depends on
the amount of twist and maximum operational
temperature. Based on (30) and (32), one can see that
the thinner O-ring (the smaller the ratio r0=R0

), the
higher the twist deformation needed to reach to generate
similar stress level. The engineering analysis

Fig. 6 O-ring twist deformation: FEM predictions vs. nature
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demonstrated that the criterion max s1
G


 � ¼ Const Tð Þ is
the reasonable first order approximation for the life
prediction. For room temperature, rough estimates give
the safe region r0

R0
≤0:25 making practically any rubber

O-ring safe. The situation is changed with an increase in
temperature. First of all, the fracture load drops approxi-
mately four times if the temperature is 200 °C. Also, due
to additional thermal stretch, according to the Aruda-
Boyce model (see the increase of the slope with stretch
ratio in Fig. 3), the shear modulus G increases with
temperature. Thus, for a stretch of 20% the maximum
ratio is r0

R0
≈0:075 at 200 °C.

Conclusions
We have shown that adding a small volume change to
classical rubber elastic models can aid in analytical and
numerical simulations of polymer structures. Rubber elastic
models with volume change, when incorporated in finite
element codes, remove the need for special elements. Such
models reduce naturally to the case of infinite bulk modu-
lus, and allow a smooth progression from compressible to
incompressible materials. Simulations using various rubber
elastic models showed that allowing volume changes
improves the numerical stability and affects the accuracy of
numerical predictions. Model modifications discussed in
the paper help to reduce numerical difficulties and readily

Fig. 7 Hoop stress along major axis for the case of far end twist (a) and stresses on inside and outside circumference of the twisted O-ring (b)

Fig. 8 Twist due to rotation of opposite sides on a diameter in opposite directions
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allow the determination of the source of the instabilities.
The analysis of stable non-round shapes of twisted O-ring
(elastic instability) became numerically stable only after
implementing a compressible material model (i.e., the nu-
merical instability is removed).
Simulations using various rubber elastic models showed

that allowing volume changes improves the numerical
stability. Models that fail to converge leave the analyst with
little in the way of information on corrections. We observed
that most of the ‘failure to converge’ results in rubber elastic
simulations are due to numerical instabilities. Our model
modification helps to reduce numerical difficulties and al-
lows modelers to readily determine the source of the in-
stabilities. We also showed that the modified Aruda-Boyce
material model is more accurate than generalized Mooney
or Ogden models in stress-strain and stability prediction.
We have evaluated the role of twist in the formation of

stress-strain state in O-rings. Such a twist can be related to
the installation process when the ring may be placed in a
high stress equilibrium state by twisting (and stretching).
This causes elastic instabilities resulting in highly deformed
O-ring shapes. Numerical results show that pure O-ring
twist causes localized hoop stresses up to 0.4G. Numerical
analysis using compressible models allowed prediction of
the stable deformed states that do not remain round. The
O-ring is buckled and reaches a chair-type non-planar shape
just beyond inside-out twist. This is an illustration of the
fundamental elastic instability. The results indicate that elas-
tic material volume change causes additional stresses mostly
associated with an additional hydrostatic pressure. Hence, it
is important to use compressible models for accurate stress
state predictions. If the ring is set on a rigid cylinder, its
shape is defined and additional stresses, sometimes very
localized, arise that in turn may lead to the O-ring cracking.

Endnotes
1Other possible application of O-ring stability analysis

is elastic models for DNA (Goriely 2006; Benham 1983).
2Note that for absolutely incompressible material, this

strain energy function is exactly coincident with the in-
compressible Aruda-Boyce expression. More realistic vol-
ume changes would be obtained by replacing 1/2K(J − 1)2

by 1/2K[(J2 − 1) − ln(J)] as shown in Ali et al. (2010).

Appendix
Conversion of stress and strain components
The finite element simulations converting from the code
strain measure (Green-Lagrange strain) to material model
measure (right-hand stretch) and from Biot (Jaumann)
stress (See Atluri and Cazzani 1995) of the material model
to the second Piola-Kirchoff stress used in the finite
element code.
We begin with the deformation gradient

Fij ¼ ∂xi
∂Xj

ð34Þ

where Xi are the original coordinates and xi are the final
coordinates. The difference is the displacement, ui, i.e.,

xi ¼ Xi þ ui: ð35Þ

The Green-Lagrange strain, used in the finite element
code, is defined by

Eij ¼ 1
2

FkiFkj−δij
� �

: ð36Þ

Note that repeated indices are summed. Using Eq. (3)

Fig. 9 Twist due to rotation of opposite sides on a diameter in same directions
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Eij ¼ 1
2

ui;j þ uj;i þ uk;iuk;j
� �

: ð37Þ

The material model uses the right-hand stretch tensor,
Uij, defined by

Fij ¼ RikUkj ð38Þ
where Uij =Uji, RikRjk = RkiRkj == δij and δij is the Kronecker
delta. Then

FkiFkj ¼ UikUkj ð39Þ
where use has been made of the fact that the matrix Uij

is symmetric. Substituting Eq. (39) into Eq. (36)

Eij ¼ 1
2

UikUkj−δij
� �

: ð40Þ

and, hence,

UikUkj ¼ δij þ 2Eij: ð41Þ
In matrix form

U
→

2 ¼ I
→
þ 2E ¼ A: ð42Þ

Let diagonal matrix λ2 contain the eigenvalues of A
and let the corresponding eigenvectors be stored row-
wise in Φ, then the right-hand stretch is given by
U ¼ ΦλΦT . Hence, given the Green-Lagrange strain,

we can find the right-hand stretch tensor.
Once the right-hand stretch tensor, and its eigen-

values, is found the material model can be used to find
the Biot stress, S.
The stress measures must preserve the rate that elastic

energy is added will define the stress measures, that is

Tij _Eij ¼ Sij _Uij: ð43Þ
where _ð Þ ¼ dðÞ=dt and T is the second Piola-Kirchoff
stress tensor. From Eq. (40)

_Eij ¼ 1
2

Uni _Unj þ _UniUnj
� �

: ð44Þ

But the tensor Uij is symmetric making

_Eij ¼ Uni _Unj: ð45Þ
Then Eq. (43) yields

Sij ¼ UikTkjorS ¼ UT : ð46Þ
We can now find the second Piola-Kirchkoff stress using

T ¼ U −1S : ð47Þ
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