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Abstract

Background: One of the current problems in studying the mechanical properties and behavior of structurally
inhomogeneous media with cracks is the characterization of acoustic wave propagation. This is especially important
in Geomechanics and prognosis of earthquakes.

Methods: In this work, the authors propose an approach that could simplify characterization of wave propagation in
medium with cracks. It is based on homogenization procedure performed at a set of equations characterizing
acoustic wave propagation in media weakened by fractures under condition of external distributed loading. Such kind
of loading in most cases is close to the real one in case of consideration of Geomechanics problems.

Results: On the basis of the proposed homogenization technique, we performed characterization of elastic
properties and plane acoustic waves propagation in a pre-loaded linear elastic medium weakened by a large amount
of cracks. We have investigated two special cases of loading: uniaxial compression and complex compression. We
have also studied how the wavespeeds depend on averaged concentration and distribution of craks.

Conclusions: Effective elastic properties were theoretically characterized for fractured media under external loading.
The results revealed high dependency of the longitudinal wave propagation speed on the relation between stresses
reasoned by an external loading.

Keywords: Fractured medium, Acoustic wave speed, Effective elastic properties, Homogenization, Periodically
distributed loading, Compression

Background
Studying of acoustic wave propagation in structurally
inhomogeneous media weakened by a large amount of
fractures nowadays is a current problem for characteriza-
tion of Earth shell, earthquakes prognosis, and mining. A
complex hierarchical structure of geomaterials’ inhomo-
geneities became a reason for consideration of simplified
models of acoustic wave propagation in such materials.
In the current work, authors propose characterization of

plane wave propagation in pre-loaded linear elastic inho-
mogeneous media weakened by a large amount of isolated
fractures. The existence of cracks makes the material to
be highly heterogeneous with multiscale structure. The-
oretical study of wave propagation in bodies and media
with fractures was presented in many research papers
(Schoenberg and Sayers 1995; Stiller and Wagner 1979;
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Schubnel and Gueguen 2003; Kachanov 1980). For exam-
ple, in (Stiller and Wagner 1979), in order to obtain
elastic wave velocities in fractured pre-loaded medium,
the effective elastic moduli were used obtained for the
case of uniaxial compression, and alteration of wave char-
acteristics of the aforementioned medium was explained
by fracturing effects. In Schoenberg and Sayers (1995);
Schubnel and Gueguen (2003), plane wave propagation
was studied in elastic media weakened by open frac-
tures; this included problems on effects of anisotropy of
open crack distribution at wave propagation speeds and
decay characteristics. Numerical studies were performed
by Zhang (2005); Chung et al. (2016) and other. In this
research, the authors applied a linear-slip displacement-
discontinuity model where fracture is assumed to have a
vanishing width across which the tractions are taken to
be continuous; however, displacements can be discontin-
uous. The novelty of our approach is the fact that we take
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into account the friction between the crack faces. Analy-
sis of deformation properties of brittle materials revealed
(Talonov and Tulinov 1988) that the characteristics of
media weakened by fractures with edges interacting under
compression stress fields depend on the stress-strain state
at the stage prior to crack growth initiation. Therefore,
the elastic medium weakened by fractures with inter-
acting edges becomes anisotropic even at homogeneous
and isotropic fracture distribution. In accordance with all
the mentioned above, here, we propose investigation of
wave propagation features in media weakened by frac-
tures under condition of external periodically distributed
loading.

Methods
Let us consider a plane wave propagating through a
pre-loaded elastic material weakened by closed fractures
(see Fig. 1).
The governing equations of motion are

ρ
∂2ui
∂t2

= ∂

∂xk
σik . (1)

Here, t is the time, xk is a coordinate (k = 1, 2, 3), ui is
a component of a displacement vector (i = 1, 2, 3), and ρ

is the density of medium. Also, we assume that the stress
tensor components arising due to wave propagation in the
medium are small in comparison with the external stress.
Equations. 1 have to be accompanied by components of

stress tensor σik and initial conditions

u|t=0 = vi,
∂ui
∂t

|t=0 = wi. (2)

Let us consider an element of volume so that its charac-
teristic size d is large in comparison with size of a crack
(d � b). The averaged strain tensor εij in elastically homo-
geneous volume element V = d3 containing N cracks can
be written as a sum of two terms (Kachanov 1980)

δεik = δε0ik + 1
2

∫
(niδUk + nkδUi) F(Z)dZ, (3)

where ε0ik are the components of strain tensor for a solid
elastic material without cracks, ni are the components of
vectors normal to the faces of cracks, F(Z) is the func-
tion of set of parameters Z such as characteristic size of
crack R and its orientation, and Ui are the components
of the jump of displacement averaged over the faces of
cracks.
We consider a loaded elastic material with Young’s

modulus E0 and Poisson’s ratio ν0 weakened by iso-
lated closed penny-shaped cracks. Such approximation of
penny-shaped fractures could be useful for the aims of
modeling of real material deformation properties when
such materials are weakened by a large amount of isolated
microfractures (Nemat-Nasser and Hori 1999). For the
case of an axially symmetric stress (σ33 < σ22 = σ11 ≤ 0),
we place a coordinate system at the center of an arbi-
trary crack so that the discontinuity lies in the same plane
with principal stresses σ11 and σ22. For this stressed state,
the crack orientation is governed by angle ψ between the
principal axis corresponding to σ33 and normal n to the
face of the crack. We assume that the crack faces react
according to the Coulomb rule τf = μσn, where μ is the
friction coefficient and σn is normal stress. The angle ψ is
α1 < ψ < α2. In general, both α1 and α2 are functions of
principal stresses σ11, σ22, and σ33. For this case, authors
(Talonov and Tulinov 1988) have shown that the incre-
ment in components of the jump of displacement may be
represented as

δUk = Jklmδσim,

Jklm = 32
(
1 − ν20

)
R3

3E0 (2 − ν0)
(nmδlk − ninknm − μnlnmτk) ,

τk = Fk
|−→F |

, Fk = σlm (nmδlk − nlnknm) ,

(4)

where δlk is the Kronecker symbol.

Fig. 1 Coordinate system. Elastic wave propagates through pre-loaded fractured medium
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Using Eqs. (3)–(4), the increments can be rewritten in
components of macroscopic strain tensor as

δεik = Sikjlδσjl + Aikjlδσjl. (5)

In Eq. (5), Sikjl are the components of the tensor Swhich
defines elastic properties of homogeneous volume ele-
ment V and Ajlpq are the components of tensor A which
defines nonlinear properties due to cracks (i, j, k, l =
1, 2, 3). For the isotropic elastic material, the components
of the tensor S can be expressed as

Sikjl = − ν0
E0

δijδkl + 1 + ν0
2E0

(
δilδkj + δikδjl

)
. (6)

The components of tensor A for the case of an axillary
symmetric stress and isolated randomly oriented closed
penny-shaped cracks with Coulomb friction are presented
in Appendix 1.
On the basis of the problem stated above, we present

an approach that is useful for characterization of effec-
tive elastic properties and acoustic wave propagation in
the considered media with randomly distributed fractures
under the condition of external loading.

Results and discussion
Elastic property characterization
Unlike the components of tensor S, components of ten-
sor A depend on the external stress and, as a result,
under the condition of external load effects, the initially
isotropic media may become anisotropic. Along with this,
the deformational properties of the media with closed
fractures may also be altered at change of the external
stress field. Regarding these facts, we consider a case
when, under the conditions of a complex stressed state
(σ33 < σ22 = σ11 ≤ 0), one of the components of the
external stress, for example, σ33, will be a periodical func-
tion with respect to coordinates. Then, in accordance with
the relations presented in Appendix 1, the deformational
characteristics of the media with isolated closed fractures
are also periodical functions of coordinates. In order to
characterize wave propagation in the media with period-
ically distributed elastic characteristics, a method could
be used developed in works Sanchez-Palencia (1980);
Chen and Fish (2000); Andrianov et al. (2008); Bakhvalov
and Panasenko (2012). Authors of (Chen and Fish 2000;
Andrianov et al. 2008) applied this technique to homog-
enization of wave propagation in periodic composite
materials.
In the current work, authors propose to utilize a tech-

nique to homogenization of wave propagation for char-
acterization of the inhomogeneous external stress field

effects at wave properties of the medium weakened by a
large amoung of distributed microfractures.
Now, when the problem is formulated by (1)–(6), we

substitute (6) into (1) and look for the solution as

ui(xn, t) = ũi(xn)e−iωt . (7)

The equations of motion (1) will be rewritten as

−ρω2ũi(xn) = ∂

∂xk

(
Cikjl(xn)

∂ũj(xn)
∂xl

)
,

Cikjl = (
Sikjl + Aikjl

)−1 .

(8)

The components of tensor C for the case of an axillary
symmetric stress and isolated randomly oriented closed
penny-shaped cracks are presented in Appendix 2.

Acoustic wave propagation characterization
Here, we discuss the case when the wavelength λ is much
larger than the characteristic size of heterogeneities. In
this case, λ ∼ L, where L is a characteristic size of
the geomaterial. Assuming that l (characteristic size of
the inhomogeneity of external stress field distribution)
is smaller than the wavelength and geological structure
sizes, we consider processes in geomaterial at two scales:
macroscale characterized by L and λ and microscale char-
acterized by sizes of inhomogeneous distribution of exter-
nal stress field. Under the assumption of separation of
scale condition, we may write α = l/L ∼ l/λ � 1 intro-
ducing new dimensionless small parameter. Then, we are
in a position where we can apply two-scale asymptotic
homogenization. Suppose that any point is described by
two special variables:

• “Slow” coordinate x, giving the general location of
the point

• “Fast” coordinate ξ ∈ Y , the location of the point
within the periodic cell

Coordinates x = {x1, x2, x3} and ξ = {ξ1, ξ2, ξ3} are
related by ξ = x/α (α � 1). All the quantities will, in
general, be functions of coordinates x and ξ .
Assume that ui can be expanded in a power series in

terms of parameter α:

ui = u(0)
i + αu(1)

i + α2u(2)
i + . . . , α � 1 (9)

Assume that, according to the aforementioned conclu-
sions, the expansions (9) are Y -periodic in ξ .
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We substitute series (9) into the problem (8) and collect
all factors at identical powers of α getting recurrent chain
of equations.
At α−2:

∂

∂ξk

⎛
⎝Cikjl

∂u(0)
j

∂ξl

⎞
⎠ = 0. (10)

At α−1

∂

∂xk

⎛
⎝Cikjl

∂u(0)
j

∂ξl

⎞
⎠ + ∂

∂ξk

⎛
⎝Cikjl

∂u(0)
j

∂xl

⎞
⎠

+ ∂

∂ξk

⎛
⎝Cikjl

∂u(1)
j

∂ξl

⎞
⎠ = 0.

(11)

At α0

∂

∂xk

⎛
⎝Cikjl

∂u(0)
j

∂xil

⎞
⎠ + ∂

∂ξk

⎛
⎝Cikjl

∂u(1)
j

∂xl

⎞
⎠

+ ∂

∂xk

⎛
⎝Cikjl

∂u(1)
j

∂ξl

⎞
⎠ + ∂

∂ξk

⎛
⎝Cikjl

∂u(2)
j

∂ξl

⎞
⎠ = 0.

(12)

Averaging over periodic cell can be defined as

〈f 〉 = 1
|Y |

∫
Yi
fdξ , (13)

where |Y | is volume of a periodic cell Y .
Homogenization of the recurrent chain of equations

gives us the following results:
Averaging of Eq. (10) in accordance with (13) leads us to

the conclusion that the first term u(0)
i in a serial expansion

does not depend on the variable ξ

u(0)
i = u(0)

i (x). (14)

Later, u(0)
i will be defined as a solution of the homoge-

nized macroscopic equation.
The next term u(1)

i in expansion (11) is represented as

u(1)
i = Nijl(ξ)

∂u(0)
j

∂xj
. (15)

We substitute (15) into (11) and, keeping in mind the
independence of u(0)

i on ξ , perform averaging of (11) in
accordance with (13). As a result, we arrive to the periodic
cell problem

∂

∂ξk

(
Cikjl + Cikqp

∂Nljq

∂ξp

)
= 0,

〈Nijl(ξ)〉 = 0.
(16)

In Eq. (16), Nijl(ξ) are ξ-periodic solutions of the cell
problem.

Averaging of Eq. (12) in accordance with (13) gives us
the following homogenized macroscopic equations:

−ρω2u(0)
i = Ceff

ikjl
∂2u(0)

j

∂xk∂xl
, (17)

Ceff
ikjl = 〈Cikjl〉 +

〈
Cikqp

∂Nljq

∂ξp

〉
. (18)

We will be looking for the solution of homogenized
problem (17) in the following form

u(0)
i = uiei

−→
k −→x ,

−→
k −→x = k (m1x1 + m2x2 + m3x3) ,

(19)

where m3 = cos θ ,m1 = sin θ cosφ,m2 = sin θ sinφ (see
Fig. 1 for angles φ and θ ),

−→
k is the wave vector, and k =∣∣∣−→k

∣∣∣ = 2π
λ

is the wavenumber.
Substituting (19) into (17), we get

aui = Ceff
ikjlmkmluj, a = ρω2

k2
, (i, j, k, l = 1, 2, 3). (20)

∥∥∥Ceff
ikjlmkml − aδij

∥∥∥ = 0. (21)

System of Eqs. (20)–(21) allows (in general case) to
determine the speeds of acoustical waves propagating in
the media with closed fractures at arbitrary direction
with respect to external stresses. But the given system of
equations could be substantially simplified in case of wave
propagation in plane perpendicular to σ33 action direction
(see Fig. 2). In this case, the components of displacement
vector will depend only on one coordinate (e.g., x), and
under the assumption that the media fracturing index
value is small

(
i.e., � = NR3 � 1

)
, the longitudinal wave

velocity will be defined by the following expression:

vp
vp0

=
(
1 − 1 − 2ν0

1 − ν0

×
(

〈A1111〉 + ν0
1 − 2ν0

(3〈A1111〉 + 〈A1133〉)

+
(

ν0
1 − 2ν0

)2
2 (2〈A1111〉 + 〈A3311〉)

)) 1
2

.

(22)

where vp0 is the speed of longitudinal wave propagating
through elastic medium without cracks

vp0 =
√

E0(1 − ν0)

(1 + ν0)(1 − 2ν0)ρ
. (23)

In order to investigate the inhomogeneity of external
stress field distribution effects on the acoustic wave speed,
we considered a case of σ33 distribution as shown in Fig. 2.
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Fig. 2 Graphical statement of a problem

Stress σ33 continuously varied in the interval between
σ ∗ − σ0 and σ ∗ + σ0 with period l.
Figures 3 and 4 demonstrate the results of the longitudi-

nal wave velocities in the media with fractures depending
on the inhomogeneity degree for stress distribution.
Results on variation of the longitudinal wave speed with

respect to changing of values of σ ∗ and unaltered σ0 are
shown in Fig. 3. It is obvious that the average value of σ33
significantly effects the change in the longitudinal wave
velocity. At the same time, at the change of the amplitude

Fig. 3 Longitudinal wave speed variation with respect to external
loading. Case of σ33 median value variation

Fig. 4 Longitudinal wave speed variation with respect to external
loading. Case of σ33 amplitude value variation

σ0 of variation of σ33, the longitudinal wave speed changes
only in quite narrow range of σ11.

Conclusions
We have considered the propagation of plane waves in
a pre-loaded linear elastic medium weakened by a large
number of cracks with periodic function of fracturing
degree. The cracks were considered to be closed penny-
shaped, isolated, randomly oriented. The model incor-
porates Coulomb friction between the faces of cracks.
A homogenization technique is used to obtain a macro-
scopic equation for the case of plane wave propaga-
tion in effectively elastic media weakened by cracks. We
have investigated low-frequency case where wavelength
exceeds the characteristic size of heterogeneities. For two
special cases of loading (uniaxial compression and com-
plex compression with σ33 < σ11 = σ22 ≤ 0), we have
characterized (theoretically) the effective elastic proper-
ties of the media. In terms of plane wave propagation
through the fractured media, we mostly concentrated at
speeds of longitudinal waves. We have studied how wave
speeds depend on averaged concentration and distribu-
tion of cracks and changing of external load.

Appendix 1: evaluating components of tensor A
As it was shown by (Talonov and Tulinov 1988), nonzero
components of tensor A can be written as

A1111 = A2222 = −D
2

(
f2(α2) − f2(α1)

)
,

A3333 = D
(
f1(α2) − f1(α1)

)
,

A1133 = A22332 = −D
2

(
f1(α2) − f1(α1)

)
,

A3311 = A3322 = D
2

(
f2(α2) − f2(α1)

)
,

(24)
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where

D = 32(1 − ν20)�

3E0(2 − ν0)
, � = NR3, (25)

f1(ψ) = cos5 ψ

5
− cos3 ψ

3
− μ

(
sin3 ψ

3
− sin5 ψ

5

)
,

f2(ψ) = cos3 ψ

3
− cos5 ψ

5
− μ

sin5 ψ

5
.

(26)

There are two special cases of loading that specify cor-
responding values of α1 and α2:

Case 1 : uniaxial compression with σ33 �= 0,
σ11 = σ22 = 0. In this case, α1 and α2 do not depend
on stress and can be evaluated as (see Talonov and
Tulinov 1988)

α1 = π

2
, α2 = β = arctanμ. (27)

Case 2 : a complex stress with σ33 �= 0, σ11 = σ22 �= 0.
In this case, α1 and α2 depend on stress and can be
written as (see (Talonov and Tulinov 1988))

α1 = β

2
+ 1

2
arcsin

(
sinβ · γ + 1

γ − 1

)
, (28)

α2 = π

2
+β−α1 = π

2
+β

2
− 1
2
arcsin

(
sinβ · γ + 1

γ − 1

)
,

(29)

where

β = arctanμ, γ = σ33
σ11

, γ >
1 + sinβ

1 − sinβ
. (30)

Appendix 2: nonzero dimensionless averaged
components of tensor C

C1122 = C2211 = E0
(1 − ν0)B

((1 + A3333)(ν0 − A1111)

+ (ν0 − A1133)(ν0 − A3311)) ,

C1111 = C2222 = E0
(1 − ν0)B

((1 + A3333)(1 + A1111)

− (ν0 − A1133)(ν0 − A3311)) ,

C1133 = C2233 = E0(ν0 − A1133
(1 − ν0)B

,

C3333 = E0
1 + A3333

(
1 + 2(ν0 − A3311)

B

)
,

C3322 = E0(ν0 − A1133)
(1 + A3333)(1 + ν0)

(
1 + 2

B
((1 + A3333)(ν0 − A1111)

+ (ν0 − A1133)(ν0 − A3311))) ,

C3311 = C3322,

Cijji = Cijij = E0
2(1 + ν0)

, i, j = 1, 2, 3,

B = (1 − ν0 + 2A1111)(1 + A3333)

− 2(ν0 − A1133)(ν0 − A3311).
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