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characterise the response of a hyper-elastic
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Abstract

Background: Membranes often feature in dynamic structures. The design of such structures generally includes the
evaluation of their dynamic characteristics, such as natural frequecies and mode shapes.

Methods: The quasi-statics ad dyamic responses of thin rubber sheeting were investigated through non-contact
experimental techniques. The rubber sheeting was modelled as a membrane structure and the material was assumed
to be hyper-elastic, isotopic and incompressible. Two hyper-elastic material models were considered, namely the
Mooney-Rivlin model and the Neo-Hookean model. The natural frequencies and mode shapes of the hyprt-elastic
membrane were anatically and numerically calculated by assuming small linear vibrations and an equi-bi-axial stress
state in the membrane. To validate the mathematical analyses, experimental modal analysis was performed where the
vibration response was measured with a laser Doppler vibrometer.

Results and conclusions: The analytical model, shows that the natural frequencies of the membrane depend on the
initial stretch. Mathematical and experimental results agree well at the lower modes. However, measurement
resolution is found to be a vital factor which limits the extraction of closely spaced modes due to difficulties with the
accurate identification of nodal line in a purely experimental approach.

Keywords: Hyper-elasticity, Non-contact techniques, Membrane, Mooney-Rivlin, Neo-Hookean, Natural frequency,
Mode shape, Digital image correlation

Background
The design of dynamic structures often includes contin-
uous mechanical systems which require the evaluation
of vibration responses (Hagedorn and DasGupta 2007).
Membrane structures are examples of such continuous
systems and are utilised in a variety of applications,
including space, civil and bio-engineering. Jenkins and
Korde (2006) and Jenkins and Leonard (1991) provide
reviews of membrane literature, including practical appli-
cations and the static and dynamic analysis of membranes.
Advantages of membranes such as low mass and stowed
volume have renewed interest in deployable structures
and their utilisation of membranes for terrestrial use.
Space applications utilise membranes in radars, antennas,
telescopes, solar concentrators and shields (Young et al.
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2005; Salama et al. 2000). Further applications are found
in robotics and biomedical prosthesis, such as artificial
organs, sensors, actuators and transducers (Jenkins and
Korde 2006; Goulbourne et al. 2004).
Natural frequencies and their corresponding mode

shapes are fundamental to understanding the dynamic
response of mechanical structures. A natural frequency is
a frequency at which the system will vibrate if initially dis-
turbed from rest and not subjected to any external loads
(De Silva 2007). A mode shape describes the displacement
pattern of the system when it is vibrating or excited at a
natural frequency (He and Fu 2001). Natural frequencies
and mode shapes are inherent properties of a system and
form part of the dynamic characteristics termed modal
parameters. The dynamic characterisation of mechanical
structures is typically performed through modal analysis
techniques.
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A musical instrument was developed to be used in an
active learning experience (Newstetter et al. 2010) to con-
vey the concepts of natural frequencies and mode shapes
to under-graduate engineering students in the instruc-
tional laboratory. The musical instrument is based on a
combination of the Chladni plate (Chladni 2004) and an
acoustic tonoscope (Jenny 2001). As shown in Fig. 1a, the
instrument comprises rubber sheeting stretched over a
circular tube, using a specially designed tensioning rig. A
speaker, connected to an amplifier and signal generator, is
placed under the tube. The frequency generator is set to a
single frequency, and the user experiences this as an audi-
ble, single-pitched tone. When the excitation frequency
is adjusted, the pitch of the audible tone changes accord-
ingly. Salt is sprinkled on the rubber surface (Fig. 1b) and
forms a distinct pattern when the rubber sheet is excited at
one of its natural frequencies. The large salt particles con-
centrate at the nodal lines and nodal circles of the mode
shapes.
The aim of the instrument was twofold: firstly, to facil-

itate deeper learning and to encourage student engage-
ment by introducing abstract mathematical concepts
through concrete, tactile, audible and visual experiences
and, secondly, to show how the deeper engineering
abstractions of experimental, analytical and numerical
modal analysis can be used to obtain the natural frequen-
cies and mode shapes of the tensioned rubber sheeting.
As such, the question is whether the modal properties
of a thin rubber material can be predicted through a
carefully planned experimental investigation and how this
compares to mathematically derived modal parameters.

As the rubber sheet is thin and two-dimensional and
does not support bending moments, it was modelled as
a membrane (Jenkins and Korde 2006). Because of the
ability to respond elastically at large deformations, the
rubber was assumed to be hyper-elastic (Gent 2012).
Whereas experimental modal analysis requires the excita-
tion of the membrane and measurements of the dynamic
response, both analytical and numerical modal analy-
ses require information on the material response of the
rubber sheeting.
Hyper-elastic membrane models are presented in other

applications including the behaviour of biological mate-
rials and tissues (Chagnon et al. 2015; Mihai et al.
2015; Rashid et al. 2012). Chakravarty (2013) modelled
the wings of micro air vehicles as hyper-elastic mem-
branes to investigate their modal parameters. Experimen-
tal modal analysis (EMA) was performed by Chakravarty
and Albertani (2011) on a pre-stretched latex mem-
brane to investigate the effects of added mass and
damping on modal characteristics. Hyper-elastic mem-
branes further model the dynamic response of dielec-
tric elastomers (Chakravarty 2014; Mockensturm and
Goulbourne 2004). Gonçalves et al. (2009) analysed
the vibrations of a pre-stretched circular hyper-elastic
membrane, both analytically and numerically. The lin-
ear and non-linear vibration of a hyper-elastic rectangular
membrane was additionally investigated by Soares and
Gonçalves (2014) using analytical and finite element (FE)
models.
The experimental evaluation of the dynamic proper-

ties of thin structures often utilises non-contact methods

Fig. 1 a Rubber sheets are tensioned over circular tubes and excited with speakers which are placed underneath the tubes. b The sound frequency
is varied, and the salt is used to visualise the mode shapes
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(Jenkins and Korde 2006), since conventional devices,
such as mechanical shakers, impact hammers and con-
tact accelerometers, present drawbacks attributed to mass
loading affects (Siringoringo and Fujino 2009). Recent
studies that employ non-contact excitation and response
measurement techniques (Chakravarty 2013; Siringoringo
and Fujino 2009; Ameri et al. 2012; Xu and Zhu 2013) indi-
cate that laser vibrometry is a popular tool to obtain the
dynamic properties of membranes.
In light of this background, the present work documents

the evaluation of experimental, analytical and numerical
investigations to determine the dynamic response of a
tensioned, circular, rubber membrane. To this end, hyper-
elastic materials are presented first, along with the hyper-
elastic material models which were considered to model
rubber material. Uni-axial tensile testing was performed
to determine the hyper-elastic material parameters. Dig-
ital image correlation (DIC), a non-contact technique,
was used to obtain measurements of the material stretch
ratio over a selected region of the rubber specimen. The
natural frequencies and mode shapes of a circular hyper-
elastic membrane are analytically computed by solving the
two-dimensional equation of motion. The vibrations are
assumed to be small, and consequently, the equation of
motion in the transverse direction is linear. The analyt-
ical model is validated by experimental modal analysis.
For the experimental investigation, a rubber membrane
is excited through acoustic means and the response
is measured with a laser Doppler vibrometer (LDV).
Finally, the analytical and experimental results are com-
pared to numerical results obtained from finite element
analysis (FEA).

Methods
Constitutive modelling of rubber
Long flexible chain molecules give rise to rubber’s abil-
ity to respond elastically at large deformations (Ali et al.
2010). Because of its highly elastic properties, rubber is
often modelled as a hyper-elastic material. A substantial
amount of literature has been published on hyper-elastic
materials, including the comprehensive texts of Treloar
(2005); Mooney (1940); Green and Adkins (1970) and Fu
and Ogden (2001) and the collective work of Rivlin and
his collaborators (Barenblatt and Joseph 1997) that con-
tain detail on the fundamental concepts related to hyper-
elastic materials. The modelling of hyper-elastic materials
comprises the selection of an appropriate strain energy (or
stored energy) function. For isotropic materials, experi-
encing homogeneous deformation, the strain energy is a
function of the deformation tensor and can be expressed
in terms of its invariants (Bower 2009) as

W = W (I1, I2, I3) (1)

whereW is the strain energy and I1, I2 and I3 are the strain
invariants. The strain invariants are given in terms of the
principle stretch ratios, denoted by λi as

I1 = λ1
2 + λ2

2 + λ3
2 (2)

I2 = λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2 (3)

I3 = λ1
2λ2

2λ3
2 (4)

In Eq. (2) through (4), λ1, λ2 and λ3 are the stretch ratios
defining the amount of stretch in the principle directions.
The principle stretches are defined as

λi = dxi
dXi

(i = 1, 2, 3) (5)

where dXi and dxi respectively refer to the undeformed
and deformed lengths of an infinitesimal element. For an
incompressible body, I3 = 1. From Eq. (4),

λ3 = 1
λ1λ2

(6)

The present work assumes that rubber responds as an
isotropic, incompressible hyper-elastic material subjected
to homogeneous deformation and the strain energy is
therefore only a function of the first two stain invariants
(Rivlin 1947).

W = W (I1, I2) (7)

Ali et al. (2010) and Marckmann and Verron (2006)
present overviews of hyper-elastic material models. The
simpler models include the Neo-Hookean and Mooney-
Rivlin hyper-elastic material models which were consid-
ered to represent the responses of rubber in the present
work. These models require at most two material con-
stants be determined, reducing the number of material
tests (Ali et al. 2010). The strain energy function for the
Mooney-Rivlin material model is defined as

W = C10(I1 − 3) + C20(I2 − 3) (8)

The Neo-Hookean material model can be regarded as
a simplification of the Mooney-Rivlin strain energy func-
tion and is obtained by setting C20 in Eq. (8) equal to zero.

W = C1(I1 − 3) (9)
In Eqs. (8) and (9), C1, C10 and C20 are experimen-

tally determined material parameters. These models are
limited in that they only predict the behaviour of rubber
at small strains. The Mooney-Rivlin model is in good
agreement for strains up to 200%, and the Neo-Hookean
model approximates experimental data up to strains of
50% (Marckmann and Verron 2006). From the strain
energy functions (Eqs. (8) and (9)), stress-deformation
relations can be obtained for special cases of stress (Fig. 2),
such as uni-axial and bi-axial stress states (Gent 2012;
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Fig. 2 Special states of stress. a Equi-bi-axial stress. b Uni-axial stress

Treloar et al. 1976). The principle Cauchy (true) stresses
are expressed as

σi = 2
[
λ2i

(
∂W
∂I1

)
−

(
1
λ2i

)(
∂W
∂I2

)]
+ p (10)

where σi denotes the true stress in the three principle
directions and p is an unspecified stress to prevent vol-
ume change, dependant on the state of stress. The stretch
ratios, as well as the stress-deformation relationships for
equi-bi-axial and uni-axial stress states are provided in
Table 1.

Uni-axial material testing
Several test methods exist to determine the required
hyper-elastic material parameters. These include uni-
axial, bi-axial, shear and bulge tests (Kim et al. 2012;
Liu et al. 2015; Sasso et al. 2008; Selvadurai 2006; Sel-
vadurai and Shi 2012). In the present work, uni-axial
tensile testing was performed on a MTS Universal Testing
Machine to investigate the response of five rectangu-
lar neoprene rubber specimens (10 mm × 170 mm). The

specimens were cut from 1-mm rubber sheeting with a
density of 1350 kg/m3. The same rubber sheeting was
used for construction of the musical instrument. As done
by Selvadurai (2006), additional pieces of rubber were
glued to the grip-contact area of the rubber specimens to
minimise pull out from the grips. Since the testing was
performed within 30 min of applying the adhesive, the
possibility of chemical reaction between the rubber spec-
imen and adhesive can be neglected (Selvadurai and Shi
2012).
The experimental setup is illustrated in Fig. 3. The rig

consisted of the MTS Universal Testing Machine and
the Strain Master DIC System from LaVision. Two high-
resolution cameras (Imager E-lite 2M) as well as two LED
illumination units, which supplied pulsed lighting, were
mounted onto a support structure. The hardware com-
ponents of the DIC system (cameras, lighting, etc.) were
controlled with a central control unit. Testworks software
was used to control and specify the tensile test conditions,
whereas the settings of the DIC system were defined with
the DIC software, DaVis. DaVis was further used for image
processing after the experiments were completed.

Table 1 Cauchy stress for special cases of stress states

Stress state Stretch ratios Neo-Hookean Mooney-Rivlin

Equi-bi-axial λ1 = λ2 = λ σ1 = σ2 = 2C1
(
λ2 − 1

λ4

)
σ1 = σ2 = 2

(
λ2 − 1

λ4

) (
C1 + C2λ2

)
λ3 = 1

λ2
σ3 = 0 σ3 = 0

Uni-axial λ3 = λ σ1 = σ2 = 0 σ1 = σ2 = 0

λ1 = λ2 = 1√
λ

σ3 = 2C1
(
λ2 − 1

λ

)
σ3 = 2

(
λ − 1

λ2

)
(C1λ + C2)
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Fig. 3 Setup for tensile testing of rubber specimens consisting of the MTS Universal Testing Machine and the DIC Strain Master System

The force, measured with a 1-kN loadcell, was divided
by the original cross-sectional area to obtain the engineer-
ing stress. Conventional techniques to measure the strain,
such as strain gauges and extensometers, cannot be used.
The rubber specimens experience large deformation dur-
ing material testing, which would lead to the de-bonding
or destruction of strain gauges. Two methods were con-
sidered to measure the strain. The first method was simi-
lar to that performed by Selvadurai (2006) and Selvadurai
and Shi (2012). The displacement of the grips was taken

to represent the change in length and the stretch ratio was
calculated according to

λ = �L + L0
L0

(11)

where �L is the change in length (i.e. displacement of
the grips) and L0 is the original length (initial distance
between the grips). Homogeneous deformation is not pos-
sible over the entire section of the specimen, because

Fig. 4 a Rubber specimen without speckled pattern and b specimen applied with speckled pattern and additional pieces of rubber at the grip
contact area
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Fig. 5 Uni-axial testing results for experiments performed at a nominal strain rate of 1 × 10−3 s−1

the grips prevent lateral deformation. For this reason,
a second method, based on digital image correlation
(DIC), was used to obtain stretch measurements over a
smaller section of the specimen. The DIC optical tech-
nique tracks the movement of surface patterns on the
sample to obtain information on the deformation (Pan
and Li 2011). A white speckled pattern was applied to
the specimens shortly before the start of each test, as
shown in Fig. 4. By having the paint somewhat wet, the
de-bonding of paint speckles during testing was min-
imised. The individual tests required roughly 20 min to
complete. To achieve quasi-static conditions (and reduce
the visco-elastic effects of the rubber), the specimens were
tensioned at a nominal strain rate of 1 × 10−3 s−1.
The experimental stress-stretch curves for both meth-

ods are reported in Fig. 5. The non-uniform deformation
near the clamped area contributed to the discrepancy
between the stress-stretch curves. Pullout of the speci-
mens still occurred during testing. Hence, some displace-
ment of the grips does not cause actual deformation of
the specimen. As a result, the first method (MTS grips)
overestimates the stretch ratio at a given stress. Because
of the non-homogeneous deformation near the grip-area
and specimen slippage, the second method is regarded as
being more accurate and the material models were fit to
the DIC data.

Material parameter identification
The relationship between the engineering stress and the
true stress for simple loading conditions is given as

σeng = σtrue
λ

(12)

Substitution of Eq. (12) into the uni-axial stress rela-
tions (Table 1) provides the Neo-Hookean and Mooney-
Rivlin uni-axial engineering stresses. The rubber is not
expected to exceed a stretch ratio of 1.3 during construc-
tion or use of themusical instrument and the hyper-elastic
models were fitted to each sample by matching small
stretches up to 1.3. The material parameters for each
hyper-elastic model, as well as the average parameter
values are reported in Table 2.
To compare the Neo-Hookean and Mooney-Rivlin

models, the root-mean-square (RMS) errors between the
averaged experimental data and the material models were
calculated. The average experimental curve as well as the
two models (using the average material parameter val-
ues) are shown in Fig. 6. The RMS errors are presented
in Table 3. Although the Mooney-Rivlin model provides
a superior fit to the experimental data, the Neo-Hookean
model was selected to describe the response of the rub-
ber sheeting in subsequent analyses. It was reasoned that
this simpler model still provides a good approximation

Table 2 Material parameters [MPa] for the Neo-Hookean and
Mooney-Rivlin hyper-elastic models

Neo-Hookean model Mooney-Rivlin model

Sample C1 C10 C20

1 0.797 0.140 0.806

2 0.764 0.193 0.701

3 0.825 0.152 0.829

4 0.800 0.131 0.823

5 0.768 0.142 0.767

Average 0.791 0.152 0.785
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Fig. 6 Curve-fitting of hyper-elastic material models to uni-axial material testing data

in the desired strain range and is better suited to the
under-graduate classroom.

Analytical analysis
To analytically obtain the natural frequencies and mode
shapes of the transversely vibrating rubber sheeting, it is
modelled as a flat circular membrane with an initial radius
R0. The membrane is stretched from its initial position
(state 1 in Fig. 7) in the radial direction to a radius of
Rf (state 2) and fixed at the boundary. The stretching of
the membrane induces equi-bi-axial stresses and the Neo-
Hookean material model is employed to obtain the initial
stress.
This is followed by an analytical linear modal analysis

about the pre-stretched state. Small vibrations (state 3)
are assumed such that the equations of motion may be
assumed linear. The vibration of circular membranes is
a common problem in engineering applications and ana-
lytical solutions to the linear vibration of membranes are
found in works such as Hagedorn, Kreyszig and Zill and
Wright (Hagedorn and DasGupta 2007; Kreyszig 1999;
Zill and Wright 2014). The equation of motion in the
transverse direction for a vibrating membrane in cylindri-
cal coordinates is

∂2w
∂t2

= c2
(

∂2w
∂r2

+ 1
r

∂w
∂r

+ 1
r2

∂2w
∂θ2

)
(13)

Table 3 RMS errors for uni-axial material testing

Material mode Average material constant RMS error

Neo-Hookean C1 = 0.791 MPa 0.032 MPa

Mooney-Rivlin
C10 = 0.152 MPa

0.012 MPa
C20 = 0.785 MPa

where c is the wave speed and can be expressed as

c2 = σ

ρ
(14)

In Eq. (14), σ is the equi-bi-axial stress and ρ is themate-
rial density. With substitution of the equi-bi-axial stress-
deformation relation, provided in Table 1, into Eq. (14),
the wave speed is expressed in terms of the Neo-Hookean
material parameter and the stretch ratio.

c2 = 2C1
ρ

(
λ2 − 1

λ4

)
(15)

C1 is the Neo-Hookean material parameter, and the
stretch ratio, λ, is defined as λ = Rf /R0. Equation (13),
together with the applicable boundary condition,
w(Rf , θ , t) = 0, is solved to obtain the transverse displace-
ment of the vibrating membrane, which in cylindrical
coordinates is given by

w(r, θ , t) = dnmJm
(

αnm
Rf

r
)
cos(mθ) cos(ωnmt) (16)

where dnm is the vibration amplitude, Jm is the Bessel func-
tion of the first kind order m and αnm is the nth root of
the Bessel function. The order of the Bessel function, m,
determines the number of nodal lines, whereas n deter-
mines the number of nodal circles of the mode shape. The
natural frequency of the (m, n)-mode is given by

ωnm = αnm
Rf

√
2C1
ρ

(
λ2 − 1

λ4

)
(17)
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Fig. 7 Different states of deformation of a membrane

The natural frequency can also be expressed in terms of
the initial radius with the substitution Rf = λR0.

ωnm = αnm
R0

√
2C1
ρ

(
1 − 1

λ6

)
(18)

Equation (18) was also obtained by Chakravarty (2013)
and Gonçalves et al. (2009).

Experimental modal analysis
To validate the analytical results, experimental modal
analysis (EMA) was performed to determine the modal
parameters of a rubber membrane. The rubber was
cut from the same 1-mm sheeting used for material
testing. The material was measured to have a density
of 1350 kg/m3 and a Neo-Hookean material constant of
0.791 MPa. The rubber sheeting was stretched over a
160-mm circular tube with a simple tensioning device
(Fig. 8). Two flanges secured the rubber sheeting. Holes in
the flange fixture allow it to be positioned over the circular
tube with threaded rods. The threaded rods were attached
to a supporting back panel. To tension the rubber sheet
(Fig. 8c), the flange fixture was displaced a total of 20 mm
towards the back panel from the starting position (Fig. 8b).
The natural frequencies depend on the initial deforma-

tion experienced by the membrane (Eqs. (17) and (18)).
Non-contact methods were employed to measure the ini-

tial stretch ratio. The flange fixture was displaced in
stepwise increments towards the back panel to a final dis-
placement of 20 mm. The membrane was subjected to
bi-axial loading, and images were incrementally taken at
the different stretch levels with two high-resolution cam-
eras (Imager E-lite 2M) from the LaVision Strain Master
DIC System. To obtain the in-plane stretch values, the
images were again processed by the DIC software, DaVis.
A schematic layout of the experimental setup is shown

in Fig. 9. The tensioned sheeting was excited acoustically
with a 10-W speaker, and the response was measured with
a Vibromet 500V laser Doppler vibrometer (LDV). The
sound signal was amplified to ensure sufficient excitation.
Classical EMA was adapted by using a free field micro-
phone to measure the sound pressure from the speaker,
which served as the reference signal. Both themicrophone
and the vibrometer were connected to a LMS SCADAS
data acquisition (DAQ) system. Furthermore, the DAQ
system provided the input signal to the speaker. Figure 10
presents the completed setup. A circular hole was cut in
the back panel to allow the sound pressure waves to reach
the membrane. As done by Ameri et al. (2012), the back
of the panel (side facing the speaker) was covered with
acoustic foam to minimise vibration of the wooden board.
The sound source was placed roughly 400 mm from the
tensioned rubber, and a half inch pre-polarised free field
microphone was mounted to point in the direction of the
source.

Fig. 8 Tensioning device for experimental modal analysis. a The membrane is held between two flanges. Threaded rods as well as a circular tube are
attached two a supporting back panel. The flange fixture is used to hold the membrane at a fixed position. b The starting position, where the
membrane barely touches the rim of the tube and does not experience any deformation. c The membrane is stretched over the tube by moving
the flange fixture towards the back panel
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Fig. 9 Schematic layout of the hardware components for EMA

A grid pattern was drawn on the membrane with a
white paint marker. The grid (Fig. 11) consisted of 41
points, arranged in a circular pattern. To identify the
mode shapes, the vibrometer was moved in a roving
sensor approach (Ameri et al. 2012; Xu and Zhu 2013)
and measurements were captured at the 41 points of the
grid. Five measurements were taken at each point and
averaged to obtain the response. The frequency band-
width was set to 1024 Hz with 2048 spectral lines and an
acquisition time of 2 s for each measurement. For exci-
tation, a linear sine sweep, spanning the bandwidth from
0 to 1024 Hz was used. The excitation and response data
were processed with the LMS Test Lab software, and the

modal parameters were estimated based on the Polymax
algorithm.

Finite element analysis
The finite element (FE) software, Abaqus, was used to
investigate the linear vibration of a pre-stretched hyper-
elastic membrane in order to validate the results obtained
from the analytical and experimental modal analyses. A
circular membrane was modelled using membrane ele-
ments with a thickness of 1 mm and a Neo-Hookean
material model with a material constant of 0.791 MPa
and a mass density of 1350 kg/m3. Four-node M3D4
elements were selected to mesh the domain. (Hence, the

Fig. 10 EMA setup with the rubber pre-tensioned using the tensioning rig
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Fig. 11 Circular grid pattern and measurement points on the rubber sheeting

dominant element type was a four-node quadrilateral ele-
ments.) Some transition three-node triangular elements
were allowed in order to mesh the circular domain. Sim-
ilar to the analytical model, the analysis was performed
in two steps. The first step consisted of a fully non-linear

analysis in which a radial displacement was specified
along the circumference of themembrane. To simulate the
dimensions of the pipe and achieve similar conditions to
that of the experimental setup, the final radius was chosen
to be 80 mm. This was followed by a linear perturbation

Fig. 12 In-plane stretches plotted against the displacement of the flange fixture for the rubber membrane stretched over a 160-mm pipe, together
with images of the displacement field at a 0 mm displacement, b 5 mm displacement, c 10 mm displacement, d 15 mm displacement and
e 17.5 mm displacement of the flange fixture
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Fig. 13 Stretch field of λ1 over the selected region at a 0 mm displacement, b 5 mm displacement, c 10 mm displacement, d 15 mm displacement
and e 20 mm displacement of the flange fixture

step in which the natural frequencies and mode shapes
were computed.

Results
Initial deformation of the rubber sheeting
Figure 12 presents the displacement of the flange fixture
plotted against the computed in-plane stretches, λ1 and
λ2, of a selected region of the membrane. It is assumed
that the stretches computed for the selected region are
representative of the stretches over the entire field, i.e. the
stretch field is assumed to be uniform. Figure 13 presents
the calculated stretch ratio, λ1, over the surface of the
selected region. The figure indicates that the stretch field
is fairly homogeneous.
Also shown in Fig. 12 are inserts (a) to (e), illustrating

the in-plane displacement field of the selected region with
the progressive displacement of the tensioning device. The
initial uneven displacement seen in inserts (b) and (c) is
caused by the rubber surface not being entirely flat. As the
stretch is increased, the radial displacement is increasingly
more evident. At the final flange-fixture displacement of
20 mm, the in-plane stretches, λ1 and λ2, were respec-
tively computed to be 1040 and 1041. Ideally, to com-
pare the analytical and experimental results, the rubber

sheeting has to be subjected to equi-bi-axial stretch. This
requires the two stretch components to be equal. Even
though exact equi-bi-axial stretch was not achieved, the
values for λ1 and λ2 are still in close proximity.

Experimental modal analysis
Frequency response functions and coherence plots were
generated for the velocity response measurements from
the LDV and the sound pressure recorded at the micro-
phone as shown in Figs. 14 and 15. As expected, the
small speaker did not provide sufficient excitation to the
membrane in the frequency range below 50 Hz, resulting
in a poor coherence in this frequency range (see Fig. 15).
It was found that the LDV measurements were affected
by the irregularity of the rubber surface, particularly near
the edge of the membrane where the surface was slightly
curved. This resulted in excessive noise in the velocity
response measurements in the frequency range above
350 Hz.
A stabilisation diagram, presented in Fig. 16, was cal-

culated by LMS Polymax from the experimental modal
analysis results. The Automatic Modal Parameter Selec-
tion feature was used to select poles, which correspond
to the vibration modes, from the stabilisation diagram.

Fig. 14 Impedance FRFs for four response measurements during EMA of the membrane
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Fig. 15 Coherence plots of sound pressure and response velocity for four measurements located on the membrane

Six modes were identified in the frequency range of
50 to 350 Hz. The stabilisation diagram (Fig. 16) fur-
ther presents several closely spaced modes in the fre-
quency range between 230 and 300 Hz where no modes
could be reliably extracted. The closely spaced modes are
likely a results of the symmetric structure, where a given
mode shape could develop at any radial location on the
membrane circumference. The modal assurance criteria
(MAC) (Pastor et al. 2012) matrix is reported in Fig. 17.
The AutoMAC matrix presents the extent of consistency
between the selected set of mode shapes.

Natural frequencies andmode shapes
To simulate similar conditions to that obtained during the
experimental analysis, the circular membrane of the finite
element model was specified to have an un-deformed

radius of 76.9 mm. The tensioning of the membrane was
simulated by specifying a displacement of 3.1 mm in the
radial direction. The initial radius of 76.9 mm and radial
displacement of 3.1 mm were chosen in order to achieve
a similar stretch value as the experimentally computed
in-plane stretches, λ1 and λ2. The stretched radius was
therefore 80 mm with a stretch ratio of 1.0403 (Rf /R0).
Using Eq. (17) with a stretch ratio of 1.0403 and a final

radius, Rf of 80 mm, the natural frequencies can be com-
puted analytically. The natural frequencies of five modes,
determined using the different modal analysis techniques,
are presented in Table 4. Since the analytically and the
numerically derived frequencies are closely matched, only
the percentage differences between the numerical and
experimental results are provided. The percentage differ-
ence is defined as |(ωn)EMA − (ωn)FEM|/(ωn)EMA, with

Fig. 16 EMA stabilisation diagram, showing the sum FRF with 2048 spectral lines, frequency resolution of 0.5 Hz and uniform windowing
(the symbol “X” indicates selected poles)
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Fig. 17 Tabular view of the AutoMAC matrix for EMA mode shapes

ωn being the natural frequency. It is normalised with
respect to the EMA results, as these results are based on
the data collected from the actual system response. The
mode shapes obtained numerically and experimentally are
presented in Fig. 18.

Discussion
Non-contact techniques, such as DIC to measure strain
and the use of a LDV to capture vibration responses, over-
come problems associated with attachment of sensors,
such as strain gauges and accelerometers. To measure the
out-of-plane vibrations of the rubber sheet, the LDV had
to be aligned perpendicular to the surface. It was found
that the LDV measurements were affected by the irregu-
larity of the rubber surface, in particular near the edge of
the membrane where the surface was slightly curved. This
resulted in somewhat noisy response measurements from
the LDV.
The roving sensor approach in EMA is time-consuming

but can be improved with the use of a scanning laser
Doppler vibrometer (SLDV). SLVDs have automatic scan-
ning abilities and, hence, have the capability for a
higher resolution of measurement points as well as faster
response measurements. Because DIC requires the appli-
cation of speckle patterns and the assembly of expensive

Table 4 Comparison of the natural frequencies [Hz] from
experimental modal analysis (EMA), finite element analysis (FEA)
and analytical (AN) analysis for λ = 1.0403 and Rf = 80 mm

Mode (m, n) αnm EMA FEA AN Diff [%]

1 (0, 1) 2.405 80.87 78.28 78.28 3.20

2 (1, 1) 3.832 132.66 124.73 124.72 5.98

3 (2, 1) 5.136 180.33 167.15 167.16 7.31

4 (0, 2) 5.520 193.59 179.65 179.66 7.20

6 (0, 3) 8.654 316.39 281.54 281.67 11.01

αnm is the nth root of the Bessel function,m refers to the number of nodal lines and
n to the number of nodal circles

equipment, this method is also relatively time-consuming.
An alternative to measuring displacement of highly elastic
materials, such as rubber, is the use of long-travel contact
extensometers.
The AutoMAC matrix in Fig. 17 indicates a fair amount

of independency between the mode shapes. The high
degree of similarity between mode pairs 5 and 6 is a result
of the low resolution of the response measurement grid
which was not adequate to represent the mode shape of
the fifth mode (Fig. 18e). As it was not possible to deter-
mine the number of nodal lines and nodal circles of the
fifth EMA mode shape, it cannot be related to the FE or
analytical results, and this mode is therefore not included
in Table 4.
From the analytical and FE models, several closely

spaced modes were identified between the fourth and
sixth EMA modes. The FE computed mode shapes of the
aforementioned modes are shown in Fig. 19. These modes
were not identified during EMA partly due to challenges
with LDVmeasurements and the limited resolution of the
measurement grid used for EMA. FromTable 4, the math-
ematical and experimental results agree well at the lower
modes.
Rubber is expected to exhibit viscoelastic mate-

rial behaviour (Gent 2012), and its response therefore
depends on the rate of deformation. Hyper-elastic mate-
rial models do not account for this strain-rate sensi-
tivity, which would be increasingly dominant at higher
modes with increased rates of vibration. Uni-axial mate-
rial testing was used to obtain the Neo-Hookean material
parameter. However, the modal analyses were performed
with the assumption of a bi-axial stress state. The hyper-
elastic material model can be improved by way of bi-axial
material testing. Other factors that contribute to the dis-
crepancy between the frequency values in Table 4 are
the deformation-amplitude dependency, strain-history
dependency (Diercks et al. 2016) and material damping
of rubber as well as the boundary conditions and the
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Fig. 18 Comparison of mode shapes using FEA (left) and EMA (right) for amode (0,1), bmode (1,1), cmode (2,1), dmode (0,2), e not identified in
FEA and fmode (0,3)

slippage of the sheeting between the flanges of the ten-
sioning device. The latter results in a reduction of the
actual stress experienced by the membrane. The analytical
and numerical models do not account for the surround-
ing medium and are further limited by the assumption of
small linear vibrations.

Conclusions
The analytical, numerical and experimental investigation
of the natural frequencies and mode shapes of a ten-
sioned rubber sheeting is presented. The rubber sheeting
is a component of a musical instrument, which is used
to explain the concepts of natural frequencies and mode
shapes to under-graduate students.

The use of digital image correlation for uni-axial ten-
sile testing was proven to be a beneficial technique
in instances where slippage of test machine grips is
a particular concern. For experimental modal analysis,
non-contact excitation andmeasurement techniques were
successfully employed to evaluate the modal properties of
the tensioned rubber sheeting. To mathematically obtain
the natural frequencies and mode shapes, the sheeting
was modelled as a hyper-elastic membrane. From uni-
axial material testing, it was found that the Neo-Hookean
hyper-elastic model provided a good fit to material testing
data for the desired strain range.
The mathematical and experimental results agree in

their predictions of the natural frequency and mode

Fig. 19 Additional mode shapes that were identified with FEA: amode (3,1) at 207.6 Hz, bmode (1,2) at 228.3 Hz, cmode (4,1) at 246.9 Hz and
dmode (2,2) at 273.8 Hz
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shape at the lower modes. However, some challenges
are encountered with the experimental identification of
closely spaced modes as a result of the limited spatial
resolution of response measurements. Although spatial
resolution is always a concern in EMA, this is especially
applicable to symmetric circular membranes where nodal
lines could be un-detected.
Discrepancies between the mathematically and experi-

mentally derived frequencies are attributed to simplifica-
tion of the complex material response exhibited by rubber,
which is not completely modelled by the hyper-elastic
material models. A proposed extension of the present
study is the extraction of material properties from the
modal test data of tensioned membranes. The modal
properties of a system depend on the system’s geometric
and material characteristics (He and Fu 2001). Since there
is good agreement between the mathematical and exper-
imental results at the fundamental mode, it can possibly
be used as a non-destructive testing method to estimate
material parameters.
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