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Abstract

This study was conducted to investigate the synergistic effects of cutting parameters on surface roughness in ball
end milling of oxygen-free high conductivity (OFHC) copper and to determine a statistical model that can suitably
correlate the experimental results. Firstly, an experimental plan based on a full factorial rotatable central composite
design with variable parameters, the cutting feed rate or feed per tooth, axial depth of cut, radial depth of cut, and
the cutting speed, was developed. The range for each variable was varied through five different levels. Secondly, a
mathematical model was formulated based on the response surface methodology (RSM) for roughness components
(Ra and Rz micron). The predicted values from the model were found to be close to the actual experimental values.
Finally, for checking the adequacy of the models, analysis of variance (ANOVA) was used to examine the dependence
of the process parameters and their interactions. The developed model would assist in selecting the cutting variables
for optimization of ball end milling process for a particular material. Based on the results from this study, it is concluded
that the step over or radial depth of cut have a higher contribution (45.81%) and thus has a significant influence on the
surface roughness of the milled OFHC copper.
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Introduction
Oxygen-free high conductivity (OFHC) Cu is a pure form
of Cu with 99.99% Cu and is widely used in electrical
applications such as cryogenic shunts, X-ray storage ring,
and various other industries for different applications
(Mahto and Kumar, 2008; Yang and Chen, 2001; Zhang,
Chen, and Kirby, 2007).
Presently, the demand for good quality of finished

OFHC Cu material (like a mirror finish surface) is increas-
ing at a brisk pace for its use in various sectors, like manu-
facturing, electrical, electronics, nuclear, and medical
science (Mahto and Kumar, 2008; Yang and Chen, 2001;
Zhang et al. 2007). To achieve a good quality of surface
finished products, the selection of proper process parame-
ters are important and essential (Yang and Chen, 2001).

Among the several metal cutting operations, end milling
has been a vital, common, and widely used process for
machining parts in numerous applications including aero-
space, automotive, and several manufacturing industries
(Mahto and Kumar, 2008; Zhang et al. 2007).
It is well known that the surface roughness is an impor-

tant parameter in the machining process (Makadia and
Nanavati, 2013). Usually, the product quality is measured
by its surface roughness. Minimizing the surface rough-
ness results in a product with good surface finish of the
final machined part. Thus, researchers have directed their
attention toward developing models and quantifying the
relationship between roughness and its parameters. The
determination of this relationship is for the advancement
in manufacturing machines, materials technology, and the
availability of modeling techniques. The different methods
include that confined in this approach response surface
method (RSM), factorial designs, and Taguchi methods
(Lin, 1994). Recently, these are the most popular methods
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used by researchers that tend to reduce the effort of a
machinist and minimize the machining time and cost
which was not possible by the old experimental approach
that includes single factor at a time or “trial-and-error”
approach (Lin, 1994). Among the various approaches used
to predict the surface roughness, the present article
demands a brief review of roughness modeling using RSM.
Alauddin et al. (Alauddin, El Baradie, and Hashmi,

1996) presented their work on optimizing the surface
finish of Inconel 718 in end milling. They used uncoated
carbide inserts under dry operating conditions. The
RSM was used to develop a first- and second-order
models, and based on the results, it was concluded that
with the increase in feed surface roughness, increases
cutting speed but increasing speed results in a decrease
in the surface roughness. Suresh et al. (Suresh, Rao, and
Deshmukh, 2002) proposed a model dependent on the
machining parameters for measuring the surface rough-
ness of material and later optimized the parameters
using a generic algorithm. Routara et al. (Routara,
Bandyopadhyay, and Sahoo, 2009) proposed a roughness
model for end milling of three different materials: Al
6061-T4, AISI 1040 steel, and medium-leaded brass
UNS C34000. The study included five roughness para-
meters, and for each behavior, a second-order response
surface equation was developed. Benadros et al. (Benardos
and Vosniakos, 2002) presented a review for surface
roughness prediction in the machining process. The

different approaches reviewed were based on machining,
experimental design and investigation, and artificial
intelligence. Colak et al. (Colak, Kurbanoglu, and Kayacan,
2007) optimized roughness parameters using a generic
algorithm for generating end milled surface. A linear
equation was proposed for the estimation of the surface
roughness that was in terms of parameters such as cutting
speed, feed, and depth of cut. Lakshmi et al. (Lakshmi and
Subbaiah, 2012) used RSM for modeling and optimization
of the end milling process parameters. Average surface
roughness for the EN24 grade steel stands for CNC verti-
cal machining center. In addition, the second-order model
was developed based on the feed, depth of cut, and the
speed of cutting. It was shown that the predicted value
from the model was in close agreement with the experi-
mental values for Ra. Jeyakumar et al. (Jeyakumar and
Marimuthu, 2013) used RSM to predict the tool wear,
cutting force, and surface roughness of Al6061/SiC
composite in end milling operation. The developed
model was further used to investigate the synergistic
effect of machining parameters on the tool wear. Ozcelik
et al. (Ozcelik and Bayramoglu, 2006) developed a statis-
tical model to predict the surface roughness in high-speed
flat end milling of AISI 1040 steel. The experiments were
performed under wet cutting conditions using step over,
spindle speed, feed rate, and depth of cut. It was found
that R2adj increases from 87.9 to 94% by adding total
machining time as a new variable. Mansour and Abdalla

Fig. 1 Experimental setup for measurement of surface roughness using Mitutoyo Surftest SJ-301

Table 1 Chemical composition of OFHC Cu (wt%)

Cu O Pb S Sb Te Fe Cd Ni Ag

99.998 0.0002 0.0001 0.0003 0.00001 0.00001 0.0001 < 0.00001 0.00005 0.0008
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(Mansour and Abdalla, 2002) studied the roughness (Ra)
in end milling of EN 32 steel using RSM. Wang et al.
(Wang and Chang, 2004) studied the effect of micro-end--
milling cutting conditions on the roughness of a brass sur-
face using RSM. Reddy and Rao (Reddy and Rao, 2005)
developed a mathematical model using RSM to calcu-
late surface roughness during end milling of medium
carbon steel.
Based on the literature presented above, it reflects that

there are mainly four machining parameters that effect
on the surface roughness of end milled parts. Thus, in
the present study, two roughness parameters viz. rough-
ness average (Ra) and mean roughness depth (Rz) was

Table 2 Parameters and their levels in ball nose milling

Parameter Symbol (units) Levels

−2 −1 0 1 2

Cutting speed Vc (m/min) 80 85 90 95 100

Cutting feed rate fz (mm/ tooth) 0.01 0.04 0.07 0.10 0.13

Axial depth of cut ap (mm) 0.1 0.2 0.3 0.4 0.5

Radial depth of cut ae (mm) 0.05 0.07 0.09 0.11 0.13

Table 3 Experimental design-CCD matrix in coded form and measured value of responses

Test
no.

Control factors Ra %
error

Rz %
errorfz ap ae vc Observed value Predicted value Observed value Predicted value

1 − 1 − 1 − 1 −1 0.290 0.288 0.69 1.820 1.815 0.30

2 1 − 1 − 1 −1 0.380 0.382 − 0.53 2.090 2.117 − 1.30

3 − 1 1 − 1 − 1 0.250 0.251 − 0.40 1.440 1.461 − 1.48

4 1 1 − 1 −1 0.340 0.345 − 1.47 1.780 1.764 0.91

5 − 1 − 1 1 − 1 0.590 0.584 0.99 0.256 2.499 2.39

6 1 − 1 1 −1 0.590 0.591 − 0.14 2.660 2.636 0.89

7 − 1 1 1 − 1 0.520 0.529 − 1.85 2.090 2.145 − 2.65

8 1 1 1 −1 0.550 0.536 2.51 2.250 2.283 − 1.46

9 −1 −1 − 1 1 0.320 0.329 − 3.00 1.830 1.855 − 1.34

10 1 −1 − 1 1 0.390 0.381 2.26 2.150 2.157 − 0.33

11 −1 1 − 1 1 0.290 0.292 − 0.86 1.480 1.501 − 1.43

12 1 1 − 1 1 0.340 0.344 − 1.24 1.790 1.804 − 0.77

13 −1 −1 1 1 0.610 0.603 1.10 2.650 2.689 − 1.46

14 1 −1 1 1 0.570 0.568 0.44 2.860 2.826 1.17

15 −1 1 1 1 0.550 0.549 0.24 2.330 2.335 − 0.23

16 1 1 1 1 0.510 0.513 − 0.57 2.440 2.473 − 1.34

17 −2 0 0 0 0.430 0.426 0.88 2.040 2.007 1.59

18 2 0 0 0 0.480 0.485 − 0.96 2.450 2.447 0.10

19 0 −2 0 0 0.520 0.526 − 1.19 2.620 2.651 − 1.18

20 0 2 0 0 0.440 0.435 1.23 2.010 1.944 3.27

21 0 0 − 2 0 0.170 0.163 4.18 1.290 1.261 2.26

22 0 0 2 0 0.620 0.628 − 1.27 2.620 2.614 0.22

23 0 0 0 − 2 0.430 0.431 − 0.28 2.010 2.013 − 0.12

24 0 0 0 2 0.450 0.447 0.09 2.280 2.242 1.64

25 0 0 0 0 0.700 0.696 0.61 3.670 3.653 0.47

26 0 0 0 0 0.690 0.696 − 0.83 3.640 3.653 − 0.35

27 0 0 0 0 0.690 0.696 − 0.83 3.620 3.653 − 0.91

28 0 0 0 0 0.700 0.696 0.61 3.680 3.653 0.74

29 0 0 0 0 0.690 0.696 − 0.83 3.670 3.653 0.47

30 0 0 0 0 0.700 0.696 0.61 3.660 3.653 0.19

31 0 0 0 0 0.700 0.696 0.61 3.630 3.653 − 0.63
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considered as responses for generating stata istical pre-
dictive model in terms of machining parameters.

Experimental procedure
The machine used for milling tests is ‘MIKRON
VCP710’ CNC machining center having the control sys-
tem Heidenhain TNC430 MHS with a vertical milling
head. The maximum spindle speed and work feed rate
of the machine is 18,000 rpm and 15 m/min respectively.
Visicam 15 for drawing and tool path generation is used.

The experimental setup used in this study is shown in
Fig. 1. The cutting tool used in the present work was a
solid carbide ball nose end mill cutter. The tool has a cut-
ter diameter of 8 mm; overall length, 63mm; fluted length,
45mm; helix angle, 30o; hardness is less than 48 HRC
number of flutes, 2. It was produced by “Sandvik” Coro-
mill Plura (CoroMill Plura solid carbide end mills tool
handbook “Sandvik Coromont,” n.d.). Surface roughness
was measured using Surftest SJ-301. The Surftest SJ-301 is
set to a cut-off length (λc) of 0.8 mm, maximum traverse
speed of 0.5 mm/s, and an evaluation length of 4 mm.

Fig. 2 Normal probability plot of residuals for Ra

Fig. 3 Plot of residuals vs. predicted response for Ra
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Stylus material is a diamond having a tip radius of
5 μm. The roughness tester is shown in Fig. 1. Surface
roughness was measured in the transverse direction on
the workpiece.

Workpiece material
The present study was performed on the OFHC Cu. The
chemical composition of the OFHC copper used is shown

in Table 1. The dimension of the specimen was 145 mm×
90 mm× 38 mm.

Experimental design
The RSM technique is based on the statistical and
mathematical (least-square fitting method) approach for
modeling and analysis of the problems where the response
is influenced by several parametric variables. The RSM
can be considered as a systematic approach to find

Fig. 4 Normal probability plot of residuals for Rz

Fig. 5 Plot of residuals vs. predicted response for Rz
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Table 4 Analysis of variance for mean roughness depth Ra (µm) (reduced quadratic model)
Source DF Sum of squares Adj. mean square F value p value Cont. % Remarks

Regression 12 0.7068 0.05890 1068.48 0.000 Significant

Linear 4 0.3425 0.08564 1553.50 0.000

fz 1 0.0051 0.00510 92.59 0.000 0.72 Significant

ap 1 0.0126 0.01260 228.64 0.000 1.78 Significant

ae 1 0.3243 0.32434 5883.60 0.000 45.81 Significant

Vc 1 0.0005 0.00050 9.15 0.007 0.07 Significant

Square 4 0.3539 0.08850 1605.34 0.000

fz × fz 1 0.1032 0.10320 1872.09 0.000 14.58

ap × ap 1 0.0828 0.08284 1502.82 0.000 11.69

ae × ae 1 0.1612 0.16117 2923.69 0.000 22.77

Vc × Vc 1 0.1165 0.11649 2113.11 0.000 16.46

Interaction 4 0.0103 0.00257 46.00 0.000

fz × ae 1 0.0076 0.00766 138.89 0.000 1.07

fz × Vc 1 0.0018 0.00181 32.77 0.000 0.25

ap × ae 1 0.0003 0.00031 5.56 0.030 0.04

ae × Vc 1 0.0005 0.00051 9.18 0.007 0.07

Error 18 0.0009 0.00005

Lack-of-fit 12 0.0008 0.00068 2.39 0.146 Not significant

Pure error 6 0.0002 0.00003

Total 30 0.7078

R2 0.9986

R2adj: 0.9977

Table 5 Analysis of variance for mean roughness depth Rz (μm) (reduced quadratic model)

Source DF Sum of squares Adj. mean square F value p value Cont. % Remarks

Regression 10 16.3434 1.6343 1220.36 0.000 Significant

Linear 4 3.8661 0.9665 721.70 0.000

fz 1 0.2904 0.2904 216.84 0.000 1.77 Significant

ap 1 0.7491 0.7491 559.33 0.000 4.57 Significant

ae 1 2.7473 2.7472 2051.38 0.000 16.78 Significant

Vc 1 0.0793 0.0794 59.25 0.000 0.48 Significant

Square 4 12.4276 3.1069 2319.92 0.000

fz × fz 1 3.6310 3.6310 2711.28 0.000 22.18

ap × ap 1 3.2831 3.2831 2451.52 0.000 20.05

ae × ae 1 5.2588 5.2588 3926.78 0.000 32.12

Vc × Vc 1 4.1584 4.1584 3105.06 0.000 25.40

Interaction 2 0.0497 0.0249 18.56 0.000

fz × ae 1 0.0272 0.0272 20.33 0.000 0.14

ae × Vc 1 0.0225 0.0225 16.80 0.001 0.16

Error 20 0.0268 0.0013

Lack-of-fit 14 0.0236 0.0017 3.22 0.079 Not significant

Pure error 6 0.0031 0.0005

Total 30 16.3702

R2 0.9984

R2adj: 0.9975
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he relationship between various machining criteria
and process parameters (Montgomery, 2005).
The design of the experiment was performed on

Minitab 17 software package. Minitab is designed for
analysis of data obtained from the following steps:

1. Choose the number of process parameters taken for
the experiment.

2. Select the appropriate model to be used.
3. ANOVA for analysis to check the adequacy of the

model.
4. Use proper elimination process stepwise, backward

or forward elimination.
5. Inspect the diagnostic plots to validate the model

statistically.
6. Steps (2) and (3) helps in identifying if the model is

appropriate followed by generating model graphs
(contour and 3D graphs) for interpretation.

In RSM, the initial step is to find an approximation
for the functional relationship between the response
(y) and controllable variables {x1, x2, … , xn}. This
relationship in terms of input parameters is written as
(Montgomery, 2005):

y ¼ x1; x2;……; xnð Þ þ ε ð1Þ

When the response function is non-linear or, there
exist a curvature in the system, then a higher degree
must be used, such as the second-order model;

y ¼ a0þ
Xk

a jX j þ
Xk

ajjX
2
j þ

Xk−1Xk
aijXiX j þ ε

j ¼ 1 j ¼ 1 i j

ð2Þ
Where, i = 1, 2,… , k − 1 and j = 1, 2,… , k with i < j, a0

free term or constant term of the regression equation,
the coefficients a1, a2, . . , ak and a11, a22, . . , akk are the
linear and the quadratic terms respectively; while a12,
a13, . . , ak − 1 are the interaction terms. X’s represents
input parameters (f, ap, ae, and Vc). The output surface
roughness components (Ra and Rz) are also called the
response factors, and ε represents the noise or error ob-
served in the response (y) (Montgomery, 2005). The
RSM fit a model used to apply the least-square tech-
nique. However, the calculated coefficients should be
tested for statistical significance. The data required to
develop the computation was collected from the design
of experiments based on rotatable central composite
design (RCCD) (Box and Hunter, 1957) and by varying
each numeric factor over five levels coded as −2, −1, 0,
1, and +2. The coded values were calculated using the
following relationship in Eq. (3):

Xi ¼ 2 2X− Xmax þ Xminð Þð Þ
Xmax−Xmin

ð3Þ

Where Xi is the required coded value of a variable X,
X is any value of the variable from Xmin to Xmax, Xmin is
the lower limit of the variable. The intermediate values
are coded as −1, 0, and 1. The selected parameters with
their level are shown in Table 2. The experimental
design consists of 31 runs as with the experimental results
are outlined in Table 3.

Table 6 Results of ANOVA analysis

Response Lack-
of-fit
DF

Pure
error

F ratio Whether
model is
adequate
or not

Model Standard

Ra 12 6 2.39 4.00 Adequate

Rz 14 6 3.22 3.96 Adequate

Fig. 6 The comparison between measured and predicted value for the roughness value (Ra)
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Results and discussion
Table 3 presents experimental results of the responses
(Ra and Rz), also the predicted values obtained from
rethe gression equation and percentage error. The
surface roughness (Ra) and mean roughness depth (Rz)
values are obtained in the range of (0.17–0.70 μm) and
(1.29–3.680 μm) respectively. Figures 2, 3, 4, and 5
present the normal probability plots of residuals and plot
of residuals vs. predicted response for both roughness
components (Ra, Rz).

Statistical analysis
The ANOVA for the surface roughness components Ra

and Rz are obtained from Minitab 17 statistical software.
These components were used to analyze the influence of

cutting speed, feed per tooth, axial depth of cut, and
radial depth of cut on the experimental results. Tables 4
and 5 show the ANOVA result of roughness compo-
nents Ra and Rz respectively. The results from ANOVA
and the F ratio were used to check the adequacy of the
models as well as to show the significance of the indivi-
dual model coefficients.
Table 4 shows ANOVA for roughness average (Ra).

From this table, it can be seen that all the linear, square
terms are significant, and the two-way interaction effect
of cutting feed rate and radial depth of cut (fz × ae),
cutting feed rate and cutting speed (fz ×Vc), axial depth
of cut and radial depth of cut (ap × ae), step over, and
cutting speed (ae ×Vc) are regarded as significant terms.
Except two-level inter foraction, the effects of fzap and

Fig. 7 The comparison between measured and predicted value for the roughness value (Rz)

Fig. 8 3D surface interaction effect of the input parameters
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apVc are becoming insignificant as their p value is
greater than 0.05, thus are not included in the final
quadratic model. Table 4 shows that coefficient of
correlation R2 is 99.86% which approaches to unity; this
indicates a close correlation between the experimental
and the predicted values as shown in Fig. 2. A check on
the plots in Figs. 2 and 4 reveals that the scatter of resi-
duals are very close to the straight line implying the
normal distribution of errors. Moreover, the scattered
data in Figs. 3 and 5 revealed that there is no obvious
pattern and formed unusual structure. This shows a
good relation between residual and fit values.
The comparison of F ratio for lack-of-fit and standard

values are presented in Table 4 corresponding to their
degrees of freedom. The standard percentage point of F
distribution for 95% confidence level is shown in Table 6.
This shows the F value (2.39) for lack-of-fit is smaller
than the standard value indicating that the proposed
model is adequate. The analysis of results shows that the
effect of feed per tooth (fz) has a significant influence on
the surface roughness with a 45.81% contribution to the
model because surface finish increases as step over
decreases. Axial depth of cut is the next dominant factor
with a contribution of 1.78%. Cutting speed (Vc) with
0.07% contribution has the lowest effect on the surface
roughness in ball end milling of OFHC Cu material.
Similarly, Table 5 shows the ANOVA table for the

mean roughness depth (Rz). It is found that the radial
depth of cut or step over (ae) is the significant factor
affecting Rz. Its contribution is 16.78%. F = 3.22 < 3.96

(F0.05,14,6 = 3.96) for lack-of-fit DF is given in Table 6 and
shows that lack-of-fit is insignificant thus model for Rz is
also adequate. The next largest factor influencing (Rz) is
axial depth of cut (ae) with a contribution of 4.57%. The
cutting speed (Vc) with 0.48% contribution has a poor
weak significant effect. The two-way interaction terms
fz × ap, fz ×Vc, ap × ae, and apVc are not significant as
their p value being less than 0.05.

Regression equation
The relationship between the factors and the perfor-
mance measures are modeled by quadratic regression.
The regression equations for both the roughness compo-
nents are formed by performing a backward elimination
process. This procedure automatically reduces the terms
that are not significant.
The roughness average Ra model is given below in

Eq. (4).

R ¼ 0:695þ 0:0145 f z−0:0229ap þ 0:116ae þ 0:0045Vc−0:06 f
2
z−0:053a

2
p

−0:075a2e−0:0638V
2
c−0:021 f za−0:0106 f zV c−0:0043apae−0:0056aeV c

ð4Þ

The mean roughness depth (Rz) is given by Eq. (5)
with a determination coefficient (R2) of 82.14%.
Rz = 3.652 + 0.11fz − 0.176ap + 0.338ae + 0.057Vc −

0.356fz2 − 0.338ap2 − 0.428ae2 − 0.381Vc2 − 0.041fz +
0.037aeVc
The predicted values of responses illustrating rough-

ness average (Ra) and mean roughness depth (Rz) from

Fig. 9 Interaction effect contour plots for Ra
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regression Eqs. (4) and (5) corresponding to different
combinations of machining parameters are reported in
Table 3. Figures 6 and 7 show the comparison of pre-
dicted values and the corresponding experimental
values. It is observed that the predicted values are in
close agreement with the experimental calculations.

3D surface and contour plots
The 3D surface graphs and contours for the surface
roughness components (Ra and Rz) are shown in Figs. 8
and 9. All the surface graphs have a curvilinear profile
corresponding to the quadratic model fitted. This means
all plot of interactions for surface roughness have a
significant effect.
From the surface plot, it is depicted that with a setting

of low radial depth of cut and near to higher level of
axial depth of cut, cutting feed rate, and cutting speed, a
good surface finish can be obtained.

Confirmation test
Figures 6 and 7 illustrate the variation between mea-
sured values and predicted responses. It can be seen that
the results of the comparison are in close agreement
with each other and can predict the values of surface
roughness components (Ra and Rz) accurately with a
95% confidence interval.

Conclusion
The present study successfully demonstrated the effect
of cutting speed, depth of cut, feed per tooth, and step
over on surface roughness in end milling of OFHC
copper using a solid carbide ball nose end milling cutter.
The following conclusions were derived from the study:

1. Surface roughness analysis using RSM was
successfully carried out. It was concluded that the
systematic approach in central composite design is
beneficial as it saves a number of experimentations
required.

2. Using the principles of response surface
methodology, a functional relationship between the
surface roughness and the cutting parameters is
established.

3. Quadratic model is fitted for both the roughness
components (Ra and Rz).

4. ANOVA tests result confirmed that models are
adequate and can be adapted to mill OFHC Cu for
achieving the desired surface finish. Comparison
between actual and predicted values confirmed that
the fitted quadratic model shows a good relational
behavior. Lack-of-fit was insignificant.

5. The surface roughness model suggests that the
radial depth of cut provides primary contribution
(45.81%) and influences most significantly on the

surface roughness. Axial depth of cut provided a
secondary contribution to the model followed by
cutting feed rate and cutting speed.

6. The obtained contours and surface plots will help
on selecting the optimum cutting parameters in
order to achieve higher surface finish.
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