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Rayleigh wave propagation in transversely
isotropic magneto-thermoelastic medium
with three-phase-lag heat transfer and
diffusion
Iqbal Kaur* and Parveen Lata

Abstract

The present research deals with the propagation of Rayleigh wave in transversely isotropic magneto-thermoelastic
homogeneous medium in the presence of mass diffusion and three-phase-lag heat transfer. The wave
characteristics such as phase velocity, attenuation coefficients, specific loss, and penetration depths are computed
numerically and depicted graphically. The normal stress, tangential stress components, temperature change, and
mass concentration are computed and drawn graphically. The effects of three-phase-lag heat transfer, GN type-III,
and LS theory of heat transfer are depicted on the various quantities. Some particular cases are also deduced from
the present investigation.
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Introduction
There are two types of surface waves namely Rayleigh
wave and Love wave. These waves have primary import-
ance in earthquake engineering. Rayleigh (1885) first in-
vestigated the waves that exist near the surface of a
homogeneous elastic half-space and named it as Rayleigh
waves. Rayleigh wave exists in a homogeneous, elastic
half-space whereas Love wave requires a surficial layer
of lowers wave velocity than the underlying half-space.
The propagation of waves in thermoelastic materials has
numerous applications in various fields of science and
technology, earthquake engineering, seismology, nuclear
reactors, aerospace, submarine structures, and in the
non-destructive evaluation in material process control
and fabrication.
Green and Naghdi (1992, 1993) dealt with the linear

and the nonlinear theories of thermoelastic body with
and without energy dissipation. Three new thermoelastic
theories were proposed by them, based on entropy
equality. Their theories are known as thermoelasticity
theory of type I, the thermoelasticity theory of type II

(i.e., thermoelasticity without energy dissipation), and
the thermoelasticity theory of type III (i.e., thermoelasti-
city with energy dissipation). On linearization, type I be-
comes the classical heat equation whereas on linearization
type-II as well as type-III, theories give a finite speed of
thermal wave propagation.
The effects of heat conduction upon the propagation

of Rayleigh surface waves in a semi-infinite elastic solid
is studied for transversely isotropic thermoelastic (TIT)
materials by Sharma, Pal, and Chand (2005) and Sharma
and Singh (1985). Marin (1997) had proved the Cesaro
means of the kinetic and strain energies of dipolar bod-
ies with finite energy. Ting (2004) explored a surface
wave propagation in an anisotropic rotating medium.
Othman and Song (2006, 2008) presented different hy-
potheses about magneto-thermoelastic waves in a homo-
geneous and isotropic medium. Kumar and Kansal
(2008a) investigated the effect of rotation on the charac-
teristics of Rayleigh wave propagation in a homoge-
neous, isotropic, thermoelastic diffusive half-space in the
context of different theories of thermoelastic diffusion,
including the Coriolis and Centrifugal forces. Sharma
and Kaur (2010) considered Rayleigh waves in rotating
thermoelastic solids with the void. Mahmoud (2011)
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investigated the Rayleigh wave velocity under the effect
of rotation, initial stress, magnetic field, and gravity field
in a granular medium. Abouelregal (2011) studied Ray-
leigh wave propagation in thermoelastic half-space in
the context of dual-phase-lag mode. Abd-Alla, Abo-
Dahab, and Hammad (2011); Abd-Alla, Abo-Dahab,
Hammad, and Mahmoud (2011); and Abd-Alla and
Ahmed (1996) studied Rayleigh waves in an orthotropic
thermoelastic medium under the influence of gravity,
magnetic field, and initial stress.
Marin, Baleanu, and Vlase (2017) have discussed the

effect of micro-temperatures for micropolar thermoelas-
tic bodies. Mahmoud (2014) studied the effect of the
magnetic field, gravity field, and rotation on the propa-
gation of Rayleigh waves in an initially stressed non-
homogeneous orthotropic medium. Singh, Kumari, and
Singh (2014) solved the basic equations for the Rayleigh
wave on the surface of TIT dual-phase-lag material
under magnetic field. Kumar and Kansal (2013) investi-
gated the propagation of Rayleigh waves in a TIT diffu-
sive solid half-space. Kumar and Gupta (2015)
investigated the effect of phase lags on Rayleigh wave
propagation in the thermoelastic medium. Biswas,
Mukhopadhyay, and Shaw (2017) dealt with the propa-
gation of Rayleigh surface waves in a homogeneous,
orthotropic thermoelastic half-space in the context of
three-phase-lag models of thermoelasticity. Kumar,
Sharma, Lata, and Abo-Dahab (2017) and Lata, Kumar,
and Sharma (2016) investigated the Rayleigh waves in a
homogeneous transversely isotropic magneto-
thermoelastic (TIM) medium with two temperatures,
Hall current, and rotation. Despite this, several re-
searchers worked on a different theory of thermoelasti-
city as Chauthale and Khobragade (2017); Ezzat and AI-
Bary (2016, 2017); Ezzat, El-Karamany, and El-Bary
(2017); Ezzat, El-Karamany, and Ezzat (2012); Hassan,
Marin, Ellahi, and Alamri (2018); Kumar, Kaushal, and
Sharma (2018); Kumar, Sharma, and Lata (2016a, 2016b,
2016c); Lata and Kaur (2019a, 2019b, 2019c, 2019d,
2019e); Lata et al. (2016); Marin (2009, 2010); Marin and
Craciun (2017); Marin, Ellahi, and Chirilă (2017); Marin
and Nicaise (2016); and Othman and Marin (2017).
Inspite of these, not much work has been carried out in

the study of the Rayleigh wave propagation in a trans-
versely isotropic magneto-thermoelastic medium with
fractional order three-phase-lag heat transfer. In this
paper, we have attempted to study the Rayleigh wave
propagation with fractional order three-phase-lag heat
transfer in a transversely isotropic magneto-thermoelastic
medium.

Basic equations
The basic governing equations for homogeneous, aniso-
tropic, generalized thermodiffusive elastic solids in the

absence of body forces, heat and mass diffusion sources
following Kumar and Kansal (2008b) are

tij ¼ cijklekl þ aijT þ bijC; ð1Þ

1þ τq
∂
∂t

þ τ2q
∂2

∂t2

� �
˙qi ¼ −

�
Kij 1þ τT

∂
∂t

� �
˙T ; j

þK �
ij 1þ τv

∂
∂t

� �
T ; j

�
;

ð2Þ
ρST 0 ¼ ρCET þ aT 0C−aijeijT 0; ð3Þ
P ¼ bklekl þ bC−aT ð4Þ
ηi ¼ −α�ijP; j ð5Þ

Here, Cijkl are elastic parameters and having symmetry
(Cijkl =Cklij =Cjikl = Cijlk). The basis of these symmetries
of Cijkl is due to

1. The stress tensor is symmetric, which is only
possible if (Cijkl = Cjikl)

2. If a strain energy density exists for the material, the
elastic stiffness tensor must satisfy Cijkl = Cklij

3. From stress tensor and elastic stiffness, tensor
symmetries infer (Cijkl = Cijlk) and Cijkl = Cklij =
Cjikl = Cijlk

The simplified Maxwell’s linear equation (Rafiq et al.
2019) of electrodynamics for a slowly moving and per-
fectly conducting elastic solid are

curl h
!¼ j

!þ ε0
∂ E
!
∂t

; curl E
!¼ −μ0

∂ h
!
∂t

; E
!

¼ −μ0
∂ u!
∂t

� H
!� �

; div h
!¼ 0: ð6Þ

From Eq. (6), we obtain

E
!¼ μ0H0 ˙w; 0;−˙uð Þ ð7Þ

h
!¼ 0;−H0e; 0ð Þ; ð8Þ

j
!¼ −h;z−ε0μ0H0€w; 0;−h;x−ε0μ0H0€u

� � ð9Þ
The equation of motion, entropy equation, and mass

conservation equation following Kumar and Kansal
(2009) are

tij; j þ Fi ¼ ρ€ui; ð10Þ
qi;i þ ρT 0˙S−ρM þ Pηi;i ¼ 0; ð11Þ

ηi;i ¼ ˙C þ ρN ð12Þ

where
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Fi ¼ μ0 j
!� H

!
� 	

i

F
!¼ Fx; Fy; Fz

� � ¼ μ0H
2
0e;x−ε0μ

2
0H

2
0€u; 0; μ0H

2
0e;z−ε0μ

2
0H

2
0€w

� �

are the components of the Lorentz force that appeared
due to initially applied a magnetic field, the total mag-

netic field is given by H
!¼ H

!
0 þ h

!
, H
!

0 is the external
applied magnetic field intensity vector, and M and N are
the strengths of the heat source and mass diffusion
source per unit mass.

The medium is supposed to be perfectly electrically
conducting and is half-space (x, 0, z) such that all the

variables are independent of the dimension y. Let H
!

0

¼ ð0;H0; 0Þ:
The heat conduction equation following Othman and

Said (2018), we have

Kij 1þ τt
∂
∂t

� �
˙T ;ji þ K�

ij 1þ τv
∂
∂t

� �
T ;ji

¼ 1þ τq
∂
∂t

þ τq
� �2 ∂2

∂t2

� �
ρCE

€T þ aijT0ёij þ aT 0 €C

 �

;

ð13Þ

where

aij ¼ −aiδij; bij ¼ −biδij; α�ij ¼ α�i δij; K �
ij

¼ K�
i δij; Kij ¼ Kiδij

Method and solution of the problem
We consider a perfectly conducting homogeneous trans-
versely isotropic magneto-thermoelastic medium in the
context of the three-phase-lag model of thermoelasticity
initially at a uniform temperature T0, an initial magnetic

field H
!

0 ¼ ð0;H0; 0Þ towards y-axis. Moreover, we
considered x, y, z taking origin on the surface (z = 0)
along the z-axis directing vertically downwards inside
the medium. For the 2D problem in the xz-plane, we
take

u ¼ u; 0;wð Þ

Now using the transformation on Eqs. (7–9) following
Slaughter (2002) is as under:

C11
∂2u
∂x2

þ C13
∂2w
∂x∂z

þ C44
∂2u
∂z2

þ ∂2w
∂x∂z

� �
−a1

∂T
∂x

−b1
∂C
∂x

þ μ0H
2
0
∂e
∂x

−ϵ0μ20H
2
0
∂2u
∂t2

� �
¼ ρ

∂2u
∂t2

� �
;

ð14Þ

C13 þ C44ð Þ ∂2u
∂x∂z

þ C44
∂2w
∂x2

þ C33
∂2w
∂z2

−a3
∂T
∂z

−b3
∂C
∂z

þ μ0H
2
0
∂e
∂z

−ϵ0μ
2
0H

2
0
∂2w
∂t2

� �

¼ ρ
∂2w
∂t2

� �
;

ð15Þ

K1 1þ τt
∂
∂t

� �
∂2˙T
∂x2

þ K3 1þ τt
∂
∂t

� �
∂2˙T
∂z2

þK�
1 1þ τv

∂
∂t

� �
∂2T
∂x2

þ K �
3 1þ τv

∂
∂t

� �
∂2T
∂z2

¼ 1þ τq
∂
∂t

þ τq
� �2 ∂2

∂t2

� ��
ρCE

∂2T
∂t2

þT0 a1
∂€u
∂x

þ a1
∂€w
∂z

� 

þ aT 0 €C

�
;

ð16Þ

α�1 b1
∂3u
∂x3

þ b3
∂3w
∂x2∂z

� �
þ α�3 b1

∂3u
∂x∂z2

þ b3
∂3w
∂z3

� �

−α�1b
∂2C
∂x2

−α�3b
∂2C
∂z2

þ α�1a
∂2T
∂x2

þ α�3a
∂2T
∂z2

¼ − ˙Cð Þ:
ð17Þ

and

txx ¼ C11exx þ C13exz−a1T ; ð18Þ

tzz ¼ C13exx þ C33ezz−a3T ; ð19Þ

txz ¼ 2C44exz; ð20Þ

where

a1 ¼ C11 þ C12ð Þα1 þ C13α3;a3 ¼ 2C13α1 þ C33α3; b1

¼ C11 þ C12ð Þα1c þ C13α3c;:

Using dimensionless quantities,

x
0
; z

0
;u

0
;w

0
� 	

¼ ω�
1

C1
x; z;u;wð Þ; ρC2

1 ¼ C11;ω�
1

¼ ρC2
1CE

K 1
T

0 ¼ a1T

ρC2
1

;C
0

¼ b1C

ρC2
1

; t
0
; τ

0
0; τ

00 ; τ
0
T ; τ

0
v; τ

0
q

� 	

¼ ω�
1 t; τ0; τ0; τT ; τv; τq
� �

:

ð21Þ

Making use of (21) in Eqs. (14–17), after suppressing
the primes, yield
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1þ δ4ð Þ ∂
2u
∂x2

þ δ1 þ δ4ð Þ ∂
2w

∂x∂z
þ δ2

∂2u
∂z2

−
∂T
∂x

−
∂C
∂x

¼ 1þ δ5ð Þ ∂
2u
∂t2

;

ð22Þ

δ1 þ δ4ð Þ ∂2u
∂x∂z

þ δ2
∂2w
∂x2

þ δ3 þ δ4ð Þ ∂
2w
∂z2

−δ7
∂T
∂z

−δ8
∂C
∂z

¼ 1þ δ5ð Þ ∂
2w
∂t2

ð23Þ

1þ τT
∂
∂t

� �
δ9

∂2˙T
∂x2

þ δ12
∂2˙T
∂z2

� �
þ 1þ τv

∂
∂t

� �
δ10

∂2T
∂x2

þ δ11
∂2T
∂z2

� �

¼ 1þ τq
∂α

∂tα
þ τq2

∂2

∂t2

� �

δ9 €T þ δ13
∂€u
∂x

þ δ14
∂€w
∂z

þ δ15 €C

� �
:

ð24Þ

q1
∂3u
∂x3

þ q2
∂3w
∂x2∂z

þ q3
∂3u
∂x∂z2

þ q4
∂3w
∂z3

�

3
þ q5

∂2C
∂x2

þ q6
∂2C
∂z2

þq7
∂2T
∂x2

þ q8
∂2T
∂z2

þ q9
∂C
∂t

¼ 0

ð25Þ
where

δ1 ¼ c13 þ c44
c11

; δ2 ¼ c44
c11

; δ3 ¼ c33
c11

; δ4 ¼ μ0H
2
0

ρC2
1

; δ5 ¼ ε0μ20H
2
0

ρ
;

δ7 ¼ a3
a1

; δ8 ¼ b3
b1

; δ9 ¼ ρω�3
1

a1
; δ10 ¼ ρω�2

1 K �
1

a1K1
;

δ11 ¼ ρω�2
1 K�

3

a1K1
; δ12 ¼ ρω�3

1 K3

a1K1
; δ13 ¼ T0ω�2

1 a1
K1

; δ14 ¼ T0ω�2
1 a3

K1
;

δ15 ¼ aρC2
1T0ω�2

1

K1b1
:

Rayleigh wave propagation
We pursue Rayleigh wave solution of the equations of
the form

u
w
T
C

0
BB@

1
CCA ¼

1
W
S
R

0
BB@

1
CCAUeiξ xþmz−ctð Þ ð26Þ

where c ¼ ω
ξ is the non-dimensional phase velocity and

m is an unknown parameter. 1, W, S, and R are the amp-
litude ratios of displacements u, w, temperature change
T, and concentration C, respectively.
Upon using Eq. (26) in Eqs. (22–25), we get

U l1 þ l6 þ l2m
2


 �þW l3m½ � þ S l5½ � þ R l5½ � ¼ 0; ð27Þ
U l3m½ � þW l2 þ l6 þ l7m

2

 �þ S l8m½ � þ R l9m½ � ¼ 0; ð28Þ

U l12½ � þW l13m½ � þ S l10 þ l11m
2


 �þ R l14½ � ¼ 0; ð29Þ

U l15 þ l16m
2


 �þW l17mþ l18m
3


 �þ S l21 þ l22m
2


 �
þR l19 þ l20m

2

 � ¼ 0;

ð30Þ

where

l1 ¼ −ξ2 1þ δ4ð Þ; l2 ¼ −δ2ξ
2; l3 ¼ −ξ2 δ1 þ δ4ð Þ; l5 ¼ −iξ;

l6 ¼ 1þ δ5ð Þξ2c2; l7 ¼ −ξ2 δ3 þ δ4ð Þ; l8 ¼ −iξδ7;l9 ¼ −iξδ8;

l10 ¼ −δ10 1−iξcτvð Þξ2 þ δ9 1−iξcτTð Þiξ3c−δ9ξ2c2 1−iξcτq−
τq2ξ

2c2

2

� �
;

l11 ¼ −δ11 1−iξcτvð Þξ2 þ δ12 1−iξcτTð Þiξ3c;

l12 ¼ −δ13iξ
3c2 1−iξcτq−

τq2ξ
2c2

2

� �
;

l13 ¼ −δ14iξ
3c2 1−iξcτq−

τq2ξ
2c2

2

� �
;

l14 ¼ −δ15ξ
2c2 1−iξcτq−

τq2ξ
2c2

2

� �
;

l15 ¼ −q1iξ
3; l16 ¼ −q3iξ

3; l17 ¼ −q2iξ
3; l18 ¼ −q4iξ

3;

l19 ¼ −q5ξ
2−q9iξc; l20 ¼ −q6ξ

2; l21 ¼ −q7ξ
2;

l22 ¼ −q8ξ
2; q1 ¼

α�1b1ω
�2
1

c21
; q2 ¼

α�1b3ω
�2
1

c21
; q3 ¼

α�3b1ω
�2
1

c21
;

q4 ¼
α�3b3ω

�2
1

c21
; q5 ¼ −

α�1bω
�2
1 ρ

b1
q6 ¼ −

α�3bω
�2
1 ρ

b1
;

q7 ¼ −
α�1aω

�2
1 ρ

a1
; q8 ¼

α�3aω
�2
1 ρ

a1
; q9 ¼ −

ω�
1c

2
1ρ

b1
:

and from (27–30), the characteristic equation is a biqua-
dratic equation in m2 given by

m8 þ B
A
m6 þ C

A
m4 þ D

A
m2 þ E

A
¼ 0; ð31Þ

where

A ¼ l2l7l11l20−l2l9l18l11;

B ¼ l1l7l11l20−l1l9l18l11 þ l2l6l11l20 þ l2l7l10l20−l14l2l22l7

þl14l2l8l18 þ l2l9l13l22−l2l9l13l22−l10l9l2l18 þ l2l11l17l9

−l3l3l11l20 þ l3l9l16l11 þ l5l3l11l18 þ l5l7l11l15 þ l2l8l13l20;

C ¼ l1l6l11l20 þ l1l7l19l11 þ l1l7l10l20−l1l7l14l22−l14l1l8l18

−l10l1l9l18 þ l1l9l13l22−l1l9l11l17 þ l2l6l11l19 þ l2l6l10l20

−l2l6l14l22 þ l1l7l10l19−l2l7l14l21−l2l8l13l19 þ l1l8l13l20

−l2l8l14l17−l2l9l13l21−l2l9l10l17−l
2
3l11l19−l

2
3l10l20 þ l23l14l22

þl3l8l12l20−l3l8l14l16−l3l9l12l22−l5l3l13l22 þ l5l3l10l18

þl5l3l11l17−l5l6l16l11−l5l7l12l22 þ l5l7l10l16 þ l5l7l11l16

−l5l8l12l18 þ l5l8l16l13 þ l5l3l13l20−l5l3l14l18−l5l7l12l20

þl5l7l14l16 þ l5l9l12l18−l5l9l13l16;
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D ¼ l1l6l11l19 þ l1l6l10l20−l1l6l14l22 þ l1l7l10l19 þ l5l7l10l15

−l1l7l14l21−l1l8l13l19−l1l8l14l17 þ l1l9l13l21−l5l8l12l17

−l1l9l10l17 þ l2l6l10l19−l2l6l14l21−l
2
3l10l19 þ l5l8l13l15

þl23l14l21 þ l3l8l12l19−l3l8l14l15−l3l9l12l21 þ l5l3l13l19

þl3l9l10l15−l3l5l13l21 þ l3l5l10l17 þ l5l6l12l22−l5l6l12l20

−l10l5l6l16−l5l3l14l17−l5l6l10l16−l5l6l15l11−l5l7l12l21

þl5l6l14l16−l5l7l12l19 þ l5l7l14l15 þ l5l9l12l17−l5l9l13l15

þl5l6l14l15;

E ¼ l1l6l10l19−l1l6l14l21−l5l6l12l21−l5l6l10l15−l5l6l12l19:

The characteristic in Eq. (27) gives four roots m2
pwhere

p = 1, 2, 3, 4. Since we consider only the surface waves,
therefore, motion is restricted to the free surface z = 0 of
the half-space, hence, satisfy the radiation conditions
Re(mp) ≥ 0.
The displacements, temperature change, and concen-

tration can be written as

u
w
T
C

0
BB@

1
CCA ¼

X4
p¼1

1
n1p
n2p
n3p

0
BB@

1
CCAApe

iξ xþimpz−ctð Þ ð32Þ

where Ap (p = 1, 2, 3, 4) are arbitrary constants and
coupling constants are

Boundary conditions
The boundary conditions at z = 0 are given by

tzz ¼ 0; tzx ¼ 0;
∂T
∂z

þ hT ¼ 0;P ¼ 0: ð33Þ

After applying dimensionless quantities from Eq. (21),
the above boundary conditions reduces to

δ1−δ2ð Þ ∂u
∂x

þ δ3
∂w
∂z

−δ7T−δ8C ¼ 0;

δ2
∂w
∂x

þ ∂u
∂z

� �
¼ 0;

∂T
∂z

þ hT ¼ 0;

∂u
∂x

þ ϵ2
∂w
∂z

−η2C þ η1T ¼ 0;

where

η1 ¼
aC11

a1b1
; η2 ¼

bC11

b21
;

Derivations of the secular equations
By using the values of u, w, T, and C from (28) in (29),
we get four linear equations as

n1p ¼
−l9l16l11 þ l3l11l20ð Þm5

p þ
l3l11l19 þ l3l10l20−l3l14l22

−l8l12l20 þ l8l14l16 þ l9l12l22

� �
m3

p þ
l3l10l19 þ l3l14l21−l8l12l19
þl8l14l15 þ l9l12l21−l9l15l10

� �
mp

l7l11l20
−l9l18l11

� �
m6

p þ
l6l11l20 þ l7l11l19 þ l7l10l20−l7l14l22
þl8l13l20−l8l14l18 þ l9l13l22−l9l10l18

� �
m4

p þ
l6l11l19 þ l6l10l20−l6l14l22 þ l7l10l19−l7l14l21

−l8l13l19−l8l14l17 þ l9l13l21−l9l10l17

� �
m2

p þ
l6l10l19
−l6l14l21

� � ;

n2p ¼
l3l13l20−l3l14l18−l7l12l20

þl7l14l16 þ l9l12l18−l9l13l16

� �
m4

p þ
l3l13l19−l3l14l17−l6l12l20 þ l6l11l16−l7l12l19

þl7l14l15 þ l9l12l17−l9l13l15

� �
m3

p þ −l6l12l19 þ l6l14l15ð Þ
l7l11l20
−l9l18l11

� �
m6

p þ
l6l11l20 þ l7l11l19 þ l7l10l20−l7l14l22
þl8l13l20−l8l14l18 þ l9l13l22−l9l10l18

� �
m4

p þ
l6l11l19 þ l6l10l20−l6l14l22 þ l7l10l19−l7l14l21

−l8l13l19−l8l14l17 þ l9l13l21−l9l10l17

� �
m2

p þ
l6l10l19
−l6l14l21

� � ;

n3p ¼
−l3l11l18
−l7l11l15

� �
m6

p þ
l3l13l22−l3l10l18−l3l11l17 þ l6l11l16−l7l12l22

−l7l10l16−l7l11l16 þ l8l12l18−l8l16l13

� �
m4

p þ
l3l13l21−l3l10l17−l6l12l22 þ l6l10l16 þ l6l11l15

þl7l12l21−l7l15l10 þ l8l12l17−l8l15l13

� �
m2

p þ
l6l10l15
−l6l12l21

� �

l7l11l20
−l9l18l11

� �
m6

p þ
l6l11l20 þ l7l11l19 þ l7l10l20−l7l14l22
þl8l13l20−l8l14l18 þ l9l13l22−l9l10l18

� �
m4

p þ
l6l11l19 þ l6l10l20−l6l14l22 þ l7l10l19−l7l14l21

−l8l13l19−l8l14l17 þ l9l13l21−l9l10l17

� �
m2

p þ
l6l10l19
−l6l14l21

� � :
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X4
p¼1

QjpAp ¼ 0; j ¼ 1; 2; 3; 4: ð34Þ

where

Q1p ¼ δ1−δ2ð Þ þ δ3impn1p þ iδ7n2p
ξ

þ iδ8n3p
ξ

;

Q2p ¼ imp þ n1p;

Q3p ¼ −ξmp þ h
� �

n2p;

Q4p ¼ 1þ iϵ2mpn1p−
iη1n2p

ξ
þ iη2n3p

ξ
:

Secular equations are

Q11

Q21

Q31

Q41

Q12

Q22

Q32

Q42

Q13

Q23

Q33

Q43

Q14

Q24

Q34

Q44

2
664

3
775 ¼ 0; or

−Q31D1 þ Q32D2−Q33D3 þ Q34D4 ¼ 0;

ð35Þ

where

D1 ¼
Q12 Q13 Q14

Q22 Q23 Q24

Q42 Q43 Q44

2
4

3
5;

D1 ¼ Q12 Q23Q44−Q24Q43ð Þ−Q13 Q22Q44−Q24Q42ð Þ þ Q14 Q22Q43−Q23Q42ð Þ;

D2 ¼
Q11 Q13 Q14
Q21 Q23 Q24

Q41 Q43 Q44

2
4

3
5;

D2 ¼ Q11 Q23Q44−Q24Q43ð Þ−Q13 Q21Q44−Q24Q42ð Þ þ Q14 Q21Q43−Q23Q41ð Þ;

D3 ¼
Q11 Q12 Q14
Q21 Q22 Q24

Q41 Q42 Q44

2
4

3
5;

D3 ¼ Q11 Q22Q44−Q24Q42ð Þ−Q12 Q21Q44−Q24Q41ð Þ þ Q14 Q21Q42−Q22Q41ð Þ;

D4 ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2
4

3
5;

D4 ¼ Q11 Q22Q33−Q23Q32ð Þ−Q12 Q21Q33−Q2Q31ð Þ þ Q13 Q21Q32−Q22Q31ð Þ:

These secular equations have entire information re-
garding the wavenumber, phase velocity, and attenu-
ation coefficient of Rayleigh waves in the transversely
isotropic magneto-thermoelastic medium. Moreover, If
we write

c−1 ¼ v−1 þ Fiω−1; ð36Þ

then ξ = E + iF, where E ¼ ω
v ; v (velocity), and F (attenu-

ation coefficient) are real.
The roots of the characteristic in Eq. (27) are com-

plex and therefore, we assume that mp =Qp + ipq, so
that the exponent in Rayleigh wave solutions (28)
becomes

iE x−imi
pz−vt

� 	
−E

F
E
xþmr

pz

� �
; ð37Þ

where

mr
p ¼ Qp−pq

F
E
;mi

p ¼ pq þ Qp
F
E
:

Equation (28) can be written as

u
w
T
C

0
BB@

1
CCA ¼

X4
p¼1

1
n1p
n2p
n3p

0
BB@

1
CCAApe

−Fx−χrpð Þ � ei E x−vtð Þ−χ ip½ �; ð38Þ

where

χrp

��� ���2− χ ip

��� ���2 ¼ E2 mr
p

� 	2
− mi

p

� 	2
� 


;

χrp

��� ��� χ ip
��� ���cosθ ¼ 1

2
E2mr

pm
i
p;

θ is the angle between the real and imaginary part of
the vector χp.

Phase velocity
Phase velocity defines the speed at which waves oscillat-
ing at a particular frequency propagate and it depends
on the real component of the wave number. The phase
velocities are given by

V ¼ ω
Re ξð Þ ð39Þ

Attenuation coefficient
The attenuation coefficient is the gradual loss of flux in-
tensity through a medium, and it depends on the im-
aginary component of the wavenumber. The attenuation
coefficient is defined as

Q ¼ Img ξð Þ; ð40Þ

Specific loss
The specific loss is the most direct way of defining in-
ternal resistance for a material. The specific loss W is
given by

W ¼ ΔW
W

� �
¼ 4π

Img ξð Þ
Re ξð Þ

����
����; ð41Þ

Penetration depth
Penetration depth describes how deep a wave can pene-
trate into a material and describes the decay of waves in-
side of a material. The penetration depth S is defined by
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S ¼ 1
Img ξð Þ ð42Þ

Particular cases

1. If τT ≠ 0, τv ≠ 0, τq ≠ 0, we obtain results for
Rayleigh wave propagation in transversely isotropic
magneto-thermoelastic solid with diffusion and with
and without energy dissipation and TPL (three-
phase-lag) effects.

2. If τT = 0, τv = 0, τq = 0, and K∗ ≠ 0, we obtain results
for Rayleigh wave propagation in magneto-
thermoelastic transversely isotropic solid with
diffusion and GN-III theory (thermoelasticity with
energy dissipation).

3. If τT = 0, τv = 0, τq = 0, and K∗ = 0, we obtain results
for Rayleigh wave propagation in magneto-
thermoelastic transversely isotropic solid with
diffusion and GN-II theory (generalized
thermoelasticity without energy dissipation).

4. If τT ≠ 0, τv ≠ 0, τq ≠ 0 , and K∗ = 0, we obtain results
for Rayleigh wave propagation in magneto-
thermoelastic transversely isotropic solid with
diffusion and GN-II theory with TPL effect

5. If τT = 0, τv = 0, τq = τ0 > 0, and K∗ = 0, and ignoring
τ2q , we obtain results for Rayleigh wave propagation

in magneto-thermoelastic transversely isotropic
solid with diffusion and Lord-Shulman (L-S)
model.

6. If τT = 0, τv = 0, and τq = 0 and if the medium is
not permitted with the magnetic field, i.e., μ0 =
H0 = 0, then we obtain results for Rayleigh wave
propagation in transversely isotropic
thermoelastic solid with diffusion and without
TPL effect

7. If C11 ¼ C33 ¼ λþ 2μ;C12 ¼ C13 ¼ λ;C44 ¼ μ; α1
¼ α3 ¼ α

0
; a1 ¼ a3 ¼ a; b1 ¼ b3 ¼ b;K1 ¼ K3 ¼ K ;

K�
1 ¼ K�

3 ¼ K �, we obtain expressions for Rayleigh
wave propagation in magneto-thermoelastic isotropic
materials with diffusion and with and without energy
dissipation with TPL effect.

Numerical results and discussion
In order to illustrate our theoretical results in the pro-
ceeding section and to show the effect of Hall current
and fractional order parameter, we now present some
numerical results. Following Dhaliwal and Sherief
(1980), cobalt material has been taken for thermoelastic
material as

c11 ¼ 3:07� 1011Nm−2; c33 ¼ 3:581� 1011Nm−2;

c13 ¼ 1:027� 1010Nm−2; c44 ¼ 1:510� 1011Nm−2;

β1 ¼ 7:04� 106Nm−2 deg−1;

β3 ¼ 6:90� 106Nm−2 deg−1; ρ ¼ 8:836� 103Kgm−3;

CE ¼ 4:27� 102jKg−1 deg−1;

K1 ¼ 0:690� 102Wm−1Kdeg−1;

K 3 ¼ 0:690� 102Wm−1K−1;T 0 ¼ 298 K;

H0 ¼ 1Jm−1nb−1; ε0 ¼ 8:838� 10−12 Fm−1; L ¼ 1:

Using the above values, the graphical representa-
tions of stress components, temperature change, and
concentration, Rayleigh wave velocity, attenuation co-
efficient, specific loss, and penetration depth of Ra-
leigh wave in the transversely isotropic thermoelastic
medium have been investigated with three-phase-lag,
GN-III, and LS theory of thermoelasticity and demon-
strated graphically as

1. The solid line relates to the three-phase lag theory
τT ≠ 0, τv ≠ 0, τq ≠ 0,

2. The dashed line relates to GN-III theory τT = 0, τv =
0, τq = 0, and K∗ ≠ 0,

3. The dotted line relates to LS theory τT = 0, τv = 0,
τq = τ0 > 0, and K∗ = 0.

Figure 1 illustrates the deviations of tangential stress
tzx with wave number. From the graph, we observe that
tangential stress tzx decreases with wave number in all
the three theories with a little difference in magnitude.
Figure 2 shows the deviations of normal stress tzz with

Fig. 1 Variations of tangential stress tzx with wavenumber
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wavenumber. Here, we observe that the normal stress tzz
increases with increase in wavenumber with a small
magnitude difference in all the three theories. Figure 3
illustrates the deviations of the attenuation coefficient
with wavenumber. For the TPL theory, we observe that
increase in attenuation coefficient is a gradually in-
creasing which shows that for TPL theory attenuation
coefficient is directly proportional to wavenumber. For
GN-III theory, the attenuation coefficient increases in
the form of a curve with an increase in wavenumber,
while for L-S theory, the value of the attenuation coeffi-
cient decreases with increase in wavenumber. Figure 4
shows the deviations of penetration depth with wave-
number. From the graphs, we observe that the penetra-
tion depth decreases for TPL and GN-II theories, while
for L-S theory, it first increases and then starts decreas-
ing with increase in wavenumber and hence shows the
influence of three different theories on penetration
depth. Figure 5 illustrates the variations of specific loss
with wavenumber. From the graphs, we observe that
the value of specific loss first decreases and then be-
comes stationary with an increase in wavenumber for
TPL theory. In GN-III theory, specific loss increases
with increase in wavenumber, while for L-S theory, the
value of specific loss first increases and then starts de-
creasing after attaining a maximum value at wavenum-
ber = 2.5. Figure 6 shows variations of concentration C
with wavenumber. From the graph, we observe that the
concentration C increases with increase in wavenumber
for all the three theories with a little magnitude differ-
ence. Figure 7 shows variations of Rayleigh wave vel-
ocity with wavenumber. The Rayleigh wave velocity
increases for the GN-III theory case and no change for
TPL case, while for L-S theory, it first decreases and
then remains the same with an increase in wavenum-
ber. Figure 8 shows variations of temperature T with

wavenumber. From the graph, we observe that the
temperature T increases with increase in wavenumber
for all the three theories with a little magnitude differ-
ence. Thus, we conclude that there is a significant influ-
ence of three-phase-lag GN-III and LS on the
deformation wave parameter attenuation coefficients,
specific loss, wave velocity, penetration depth, temperature,
concentration, tangential stress, normal stress components,
and of the transversely isotropic magneto-thermoelastic
medium.

Conclusion
From the above study, we conclude the following:

� A mathematical model to study the Rayleigh wave
propagation in the homogeneous transversely

Fig. 2 Variations of normal stress tzz with wavenumber
Fig. 3 Variations of attenuation coefficient with wavenumber

Fig. 4 Variations of penetration depth with wavenumber
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isotropic magneto-thermoelastic medium in the
presence of mass diffusion and the three-phase-lag
heat transfer has been developed, and various wave
characteristics, i.e., attenuation coefficients, specific
loss, wave velocity, penetration depth, temperature,
concentration, tangential stress, and normal stress
components have been derived and represented
graphically. The secular equation of Rayleigh waves
in the presence of the effect of diffusion in a
transversely isotropic magneto-thermoelastic
medium has been derived. The comparison of
different theories of thermoelasticity, i.e., TPL,
GN-III, and L-S theories are carried out.

� From the graphs, we observe a significant influence
of three-phase-lag, GN-III and LS theories on the
various wave characteristics, i.e., attenuation
coefficients, specific loss, wave velocity, penetration

depth, temperature, concentration, tangential stress,
and normal stress components in transversely
isotropic magneto-thermoelastic medium.
Attenuation of waves increases, whereas the
penetration depth decreases with the increase in
wavenumber.

� The study of elastic wave attenuation particularly in
transversely isotropic magneto-thermoelastic
medium carries information about transversely
isotropic magneto-thermoelastic medium properties
and is important for the design of geophysics and
seismic investigations.

� Significant resemblance and non-resemblance
among the results under TPL, GN-III, and L-S
theory of thermoelasticity have been identified.

� However, the problem is theoretical, but it can
deliver useful information for experimental

Fig. 8 Variations of temperature T with wave number

Fig. 5 Variations of specific loss with wavenumber

Fig. 6 Variations of concentration C with wavenumber

Fig. 7 Variations of Rayleigh wave velocity with wave number
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researchers working in the field of geophysics and
earthquake engineering and seismologist working in
the field of mining tremors and drilling into the
Earth crust.

Nomenclature
δij Kronecker delta
Cijkl Elastic parameters
βij Thermal elastic coupling tensor
T Absolute temperature
T0 Reference temperature
φ Conductive temperature
tij Stress tensors
eij Strain tensors
ui Components of displacement
ρ Medium density
CE Specific heat
aij Tensor of thermal moduli
αij Linear thermal expansion coefficient
Kij Materialistic constant
K�

ij Thermal conductivity

ω Angular frequency
μ0 Magnetic permeability
Ω Angular velocity of the solid and equal to Ωn, where
n is a unit vector
u! Displacement vector

H
!

0 Magnetic field intensity vector

j
!

Current density vector
Fi Components of the Lorentz force
τ0 Relaxation time
ε0 Electric permeability
δ(t) Dirac’s delta function
τt Phase lag of heat flux
τv Phase lag of temperature gradient
τq Phase lag of thermal displacement
α Fractional-order derivative
ξ Wavenumber
bij Tensor of diffusion moduli
C The concentration of the diffusion material
α�ij Diffusion parameters

ηi The flow of diffusion mass vector
qi Components of heat flux vector
P Chemical potential per unit mass
S Entropy per unit mass
k Material constant
ω�
1 Characteristics frequency of the medium

C1 Longitudinal wave velocity
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