Akis, T. (2009). Elastoplastic analysis of FG spherical pressure vessels. *Computational Materials Science, 46*, 545–554. https://doi.org/10.1016/j.commatsci.2009.04.017.

Article
Google Scholar

Akis, T., & Eraslan, A. (2007). Exact solution of rotating FGM shaft problem in the elastoplastic state of stress. *Archive of Applied Mechanics, 77*, 745–765. https://doi.org/10.1007/s00419-007-0123-3.

Article
MATH
Google Scholar

AnsariSadrabadi, S., Rahimi, G., Citarella, R., ShahbaziKarami, J., Sepe, R., & Esposito, R. (2017). Analytical solutions for yield onset achievement in FGM thick walled cylindrical tubes undergoing thermomechanical loads. *Composites Part B: Engineering, 116*, 211–223. https://doi.org/10.1016/j.compositesb.2017.02.023.

Article
Google Scholar

Bahaadini, R., & Saidi, A. (2018). Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. *European Journal of Mechanics - A/Solids, 72*, 298–309. https://doi.org/10.1016/j.euromechsol.2018.05.015.

Article
MathSciNet
MATH
Google Scholar

Bahaloo, H., Papadopolus, J., & Ghosha, R. (2016). Transverse vibration and stability of an FG rotating annular disk with a circumferential crack. *International Journal of Mechanical Sciences, 113*, 26–35. https://doi.org/10.1016/j.ijmecsci.2016.03.004.

Article
Google Scholar

Bose, T., & Rattan, M. (2018). Effect of thermal gradation on steady state creep of functionally graded rotating disc. *European Journal of Mechanics - A/Solids, 67*, 169–176. https://doi.org/10.1016/j.euromechsol.2017.09.014.

Article
MathSciNet
MATH
Google Scholar

Bouderba, B., Houari, M., Tounsi, A., & Mahmoud, S. (2016). Thermal stability of FG sandwich plates using a simple shear deformation theory. *Structural Engineering & Mechanics, 58-3*, 397–422. https://doi.org/10.12989/sem.2016.58.3.397.

Article
Google Scholar

Burzyński, S., Chróścielewski, J., Daszkiewicz, K., & Witkowski, W. (2018). Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type. *Composites Part B: Engineering, 154*, 478–491. https://doi.org/10.1016/j.compositesb.2018.07.055.

Article
Google Scholar

J.Chakrabarty, “Theory of plasticity”, 3rd ed. Elsevier Butterworth-Heinemann, 2006.

Dai, H., Fu, Y., & Dong, Z. (2006). Exact solutions for functionally graded pressure vessels in a uniform magnetic field. *International Journal of Solids and Structures, 43*, 5570–5580. https://doi.org/10.1016/j.ijsolstr.2005.08.019.

Article
MATH
Google Scholar

Dai, T., & Dai, H. L. (2017). Analysis of a rotating FGMEE circular disk with variable thickness under thermal environment. *Applied Mathematical Modelling, 45*, 900–924. https://doi.org/10.1016/j.apm.2017.01.007.

Article
MathSciNet
Google Scholar

Duc, N. D. (2013). Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shollow shells on elastic foundation. *Journal of Composite Structures, 102*, 306–314. https://doi.org/10.1016/j.compstruct.2012.11.017.

Article
Google Scholar

Duc, N. D. (2016a). Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory. *Journal of European Journal of Mechanics - A/Solids, 58*, 10–30. https://doi.org/10.1016/j.euromechsol.2016.01.004.

Article
MathSciNet
MATH
Google Scholar

Duc, N. D. (2016b). Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations. *Journal of Sandwich Structures and Materials, 20-3*, 351–378. https://doi.org/10.1177/1099636216653266.

Article
Google Scholar

Duc, N. D., Bich, D. H., & Cong, P. H. (2016). Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations. *Journal of Thermal Stresses, 39-3*, 278–297. https://doi.org/10.1080/01495739.2015.1125194.

Article
Google Scholar

Duc, N. D., & Cong, P. H. (2018). Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. *Journal of Sandwich Structures and Materials, 20-6*, 692–717. https://doi.org/10.1177/1099636216674729.

Article
Google Scholar

Duc, N. D., Cong, P. H., Anh, V. M., Quang, V. D., Phuong, T., Tuan, N. D., & Thinh, N. H. (2015). Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment. *Journal of Composite Structures, 132*, 597–609. https://doi.org/10.1016/j.compstruct.2015.05.072.

Article
Google Scholar

Duc, N. D., Homayoun, H., Quan, T. Q., & Khoa, N. D. (2019). Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shollow shells in thermal environment. *European Journal of Mechanics - A/Solids, 75*, 355–366. https://doi.org/10.1016/j.euromechsol.2019.01.024.

Article
MathSciNet
MATH
Google Scholar

Duc, N. D., Khoa, N. D., & Thiem, H. T. (2018). Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy’s third-order shear deformation shell theory. *Journal of Mechanics of Advanced Materials and Structures, 25-13*, 1157–1167. https://doi.org/10.1080/15376494.2017.1341581.

Article
Google Scholar

Duc, N. D., Kim, S. E., & Chan, D. Q. (2018). Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT. *Journal of Thermal Stresses, 41-3*, 331–365. https://doi.org/10.1080/01495739.2017.1398623.

Article
Google Scholar

Duc, N. D., Lee, J., Nguyen-Thoi, T., & Thang, P. T. (2017). Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations. *Journal of Aerospace Science and Technology, 68*, 391–402. https://doi.org/10.1016/j.ast.2017.05.032.

Article
Google Scholar

Duc, N. D., Nguyen, P. D., & Khoa, N. D. (2017). Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments. *Journal of Thin Walled Structures, 117*, 178–189. https://doi.org/10.1016/j.tws.2017.04.013.

Article
Google Scholar

Duc, N. D., Thang, P., Dao, N., & Vantac, N. (2015). Nonlinear buckling of higher deformable S-FGM thick circular cylindrical shells with metal–ceramic–metal layers surrounded on elastic foundations in thermal environment. *Composite Structure, 121*, 134–141. https://doi.org/10.1016/j.compstruct.2014.11.009.

Article
Google Scholar

Duc, N. D., Thuy Anh, V. T., & Cong, P. H. (2014). Nonlinear axisymmetric response of FGM shollow spherical shells on elastic foundations under uniform external pressure and temperature. *Journal of European Journal of Mechanics - A/Solids, 45*, 80–89. https://doi.org/10.1016/j.euromechsol.2013.11.008.

Article
MATH
Google Scholar

ND Duc, N.Tuan, P.Tran, P.Cong, P.Nguyen, “Nonlinear stability of eccentrically stiffened S-FGM elliptical cylindrical shells in thermal environment”, Thin-Walled Structures, 108(2016) p.p.280-290 https://doi.org/10.1016/j.tws.2016.08.025.

Article
Google Scholar

El-Haina, F., Bakora, A., Bousahla, A., Tounsi, A., & Mahmoud, S. (2017). A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. *Structural Engineering Mechanics, 63-5*, 585–595. https://doi.org/10.12989/sem.2017.63.5.585.

Article
Google Scholar

Eraslan, A., & Akis, T. (2006a). Plane strain analytical solutions for a functionally graded elastic–plastic pressurized tube. *International Journal of Pressure Vessels and Piping, 83*, 635–644. https://doi.org/10.1016/j.ijpvp.2006.07.003.

Article
Google Scholar

Eraslan, A., & Akis, T. (2006b). On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. *Acta Mechanica, 181*, 43–63. https://doi.org/10.1007/s00707-005-0276-5.

Article
MATH
Google Scholar

Eraslan, A., & Akis, T. (2006c). The stress response of partially plastic rotating FGM hollow shafts: Analytical treatment for axially constrained ends. *Mechanics Based Design of Structures and Machines, 34-3*, 241–260. https://doi.org/10.1080/15397730600779285.

Article
Google Scholar

F.Figueiredo, L.Borges, F.Rochinha, “Elastoplastic stress analysis of thick-walled FGM pipes” AIP Conference Proceedings(2008) p.p. 147-52. https://doi.org/10.1063/1.2896766

Fukui, Y., & Yamanaka, N. (1991). Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure. *JSME International Journal, 35-4*, 379–385. https://doi.org/10.1299/jsmea1988.35.4_379.

Article
Google Scholar

HosseiniKordkheili, S., & Naghdabadi, R. (2006). Thermoelastic analysis of a functionally graded rotating disk. *Composite Structure, 79-4*, 508–516. https://doi.org/10.1016/j.compstruct.2006.02.010.

Article
Google Scholar

Jabbari, M., Sohrabpour, S., & Eslami, M. (2002). Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. *International Journal of Pressure Vessels & Piping, 79-7*, 493–497. https://doi.org/10.1016/S0308-0161(02)00043-1.

Article
MATH
Google Scholar

Kargarnovin, M., Faghidian, S., & Arghavani, J. (2007). Limit analysis of FGM circular plates subjected to arbitrary rotational symmetric loads. *World Academy of Science, Engineering and Technology, 36*. https://doi.org/10.5281/zenodo.1332230.

Kaviprakash, G., Kannan, C., Lawrence, I., & Regan, A. (2014). Design and analysis of composite drive shaft for automotive application. *International Journal of Engineering Research & Technology, 3*, 429–436.

Google Scholar

Khanna, K., Gupta, V., & Nigam, S. (2017). Creep analysis in functionally graded rotating disc using Tresca criterion and comparison with von-Mises criterion. *Materials Today Proceedings, 4-2-A*, 2431–2438. https://doi.org/10.1016/j.matpr.2017.02.094.

Article
Google Scholar

Khoa, N. D., Thiem, H. T., Thiem, o. T., & Duc, N. D. (2019). Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. *Journal Mechanics of Advanced Materials and Structures, 26-3*, 248–259. https://doi.org/10.1080/15376494.2017.1341583.

Article
Google Scholar

Klocke, F., Klink, A., & Veselovac, D. (2014). Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. *CIRP Annals, 63-2*, 703–726 https://doi.org/10.1016/j.cirp.2014.05.004.

Article
Google Scholar

Lal, A., Jagtap, K., & Singh, B. (2013). Post buckling response of FGM plate subjected to mechanical and thermal loadings with random material properties. *Applied Mathematical Modelling, 37-5*, 2900–2920 https://doi.org/10.1016/j.apm.2012.06.013.

Article
Google Scholar

Lee, D., Kim, H., Kim, J., & Kim, J. (2004). Design and manufacture of an automotive hybrid aluminum composite drive shaft. *Composite Structures, 63*, 87–99. https://doi.org/10.1016/S0263-8223(03)00136-3.

Article
Google Scholar

Mack, W. (1991). Rotating elastic-plastic tube with free ends. *International Journal of Solids and Structures, 27*, 1462–1476. https://doi.org/10.1016/0020-7683(91)90042-E.

Article
MATH
Google Scholar

Mahamood, R., & Akinlabi, E. (2017). *“Functionally graded materials”, Topics in Mining*. Springer, Switzerland: Metallurgy & Materials Eng.

Book
Google Scholar

Mathew, T., Natarajan, S., & Pañeda, E. (2018). Size effects in elastic-plastic functionally graded materials. *Composite Structures, 204*, 43–51. https://doi.org/10.1016/j.compstruct.2018.07.048.

Article
Google Scholar

Mendelson, A. (1968). *Plasticity, theory and application*. NewYork: Macmillman.

Google Scholar

Moorthy, R., Mitiku, Y., & Sridhar, K. (2013). Design of automobile driveshaft using carbon/epoxy and kevlar/epoxy composites. *American Journal of Engineering Research, 2*, 173–179.

Google Scholar

Nino, M., Hirai, T., & Watanabe, R. (1987). The functionally gradient materials. *Journal of Japan Society of Composite Material, 13*, 257–264.

Article
Google Scholar

Peng, X., & Li, X. (2012). Elastic analysis of rotating functionally graded polar orthotropic disks. *International Journal of Mechanical Sciences, 60*, 84–91. https://doi.org/10.1016/j.ijmecsci.2012.04.014.

Article
Google Scholar

Seraj, S., & Ganesan, R. (2018). Dynamic instability of rotating doubly-tapered laminated composite beams under periodic rotational speeds. *Composite Structures, 200*, 711–728. https://doi.org/10.1016/j.compstruct.2018.05.133.

Article
Google Scholar

Swaminathan, K., Naveenkumar, D., Zenkour, A., & Carrera, E. (2015). Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review. *Composite Structures, 120*, 10–31. https://doi.org/10.1016/j.compstruct.2014.09.070.

Article
Google Scholar

Thom, D. V., Kien, N. D., Duc, N. D., Duc, D. H., & Tinh, B. Q. (2017). Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory. *Journal of Thin Walled Structures, 119*, 687–699. https://doi.org/10.1016/j.tws.2017.07.022.

Article
Google Scholar

S. P. Timoshenko and J. N. Goodier, “Theory of elasticity”, 3rd edition, McGraw-Hill, NY, 1970.

Torabnia, S., Hemati, M., & Aghajanib, S. (2019). Investigation of a hollow shaft to determine the maximum angular velocity regarding the FGM properties. *Materials Science Forum, 969*, 669–677 https://doi.org/10.4028/www.scientific.net/MSF.969.669.

Article
Google Scholar

Tsiatas, G., & Babouskos, N. (2017). Elastic-plastic analysis of functionally graded bars under torsional loading. *Composite Structures, 176*, 254–267. https://doi.org/10.1016/j.compstruct.2017.05.044.

Article
Google Scholar

Tutuncu, N., & Ozturk, M. (2001). Exact solutions for stress in functionally graded pressure vessels. *Composites Part B: Engineering, 32-8*, 683–686. https://doi.org/10.1016/S1359-8368(01)00041-5.

Article
Google Scholar

Yildirim, S., & Tutuncu, N. (2018). On the inertio-elastic instability of variable-thickness functionally-graded disks. *Mechanics Research Communications, 91*, 1–6. https://doi.org/10.1016/j.mechrescom.2018.04.011.

Article
Google Scholar

You, L., You, X., Zhang, J., & Li, J. (2007). On rotating circular disks with varying material properties. *Zeitschrift für angewandte Mathematik und Physik, 58*, 1068–1084. https://doi.org/10.1007/s00033-007-5094-2.

Article
MathSciNet
MATH
Google Scholar

You, L., Zhang, J., & You, X. (2005). Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. *International Journal of Pressure Vessels and Piping, 82*, 347–354. https://doi.org/10.1016/j.ijpvp.2004.11.001.

Article
Google Scholar

ZamaniNejad, M., & Rahimi, G. (2010). Elastic analysis of FGM rotating cylindrical pressure vessels. *Journal of the Chinese Institute of Engineers, 33-4*, 525–530. https://doi.org/10.1080/02533839.2010.9671640.

Article
Google Scholar

Zharfi, H., & EkhteraeiToussi, H. (2018). Time dependent creep analysis in thick FGM rotating disk with two-dimensional pattern of heterogeneity. *International Journal of Mechanical Sciences, 140*, 351–360. https://doi.org/10.1016/j.ijmecsci.2018.03.010.

Article
Google Scholar