Ashby, M. F., & Easterling, K. E. (1984). The transformation hardening of steel surfaces by laser beam - hypo-eutectoid steels. Acta Metallurgica, 32(11), 1935–1948.
Article
Google Scholar
Babu, P. D., Buvanashekaran, G., & Balasubramanian, K. R. (2013). Experimental investigation of laser transformation hardening of low alloy steel using response surface methodology. Int J Adv Manuf Technol, 67(5), 1883–1897.
Article
Google Scholar
Babu, P. D., & Marimuthu, P. (2019). Status of laser transformation hardening of steel and its alloys: a review. Emerging Materials Research, 8(2), 188–205.
Article
Google Scholar
Bhadesia, H. K. D. H. (1981). Diffusion of carbon in austenite. Metal Science, 15, 477–479.
Article
Google Scholar
Bhushan, B., & Koinkar, V. N. (1994). Nanoindentation hardness measurements using atomic force microscopy. Applied Physics Letters, 64(13), 1653–1655.
Article
Google Scholar
Butt, H. J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1–6), 1–152.
Article
Google Scholar
Calabri, L., Pugno, N., Rota, A., Marchetto, D., & Valeri, S. (2007). Nanoindentation shape effect: experiments, simulations and modelling. Journal of Physics: Condensed Matter, 19(39), 395002.
Google Scholar
Chen, C., Zeng, X., Wang, Q., Lian, G., & YanWang, X. H. (2020). Statistical modelling and optimization of microhardness transition through depth of laser surface hardened AISI 1045 carbon steel. Optics & Laser Technology, 124, 105976.
Article
Google Scholar
Fortunato, A., Ascari, A., Liverani, E., Orazi, L., & Cuccolini, G. (2013). A comprehensive model for laser hardening of carbon steels. Journal of Manufacturing Science and Engineering, 135, 1–8 2013.
Article
Google Scholar
Furuhara, T., Yamaguchi, J., Sugita, N., Miyamoto, G., & Maki, T. (2003). Nucleation of proeutectoid ferrite on complex precipitates in austenite. ISIJ International, 43(10), 1630–1639.
Article
Google Scholar
Ion, J. C. (2002). Laser transformation hardening. Surface Engineering, 18(1), 14–31.
Article
Google Scholar
Jacot, A., & Rappaz, M. (1997). A two-dimensional diffusion model for the prediction of phase transformation: application to austenization and homogenization of hypoeutectoid fe-c steels. Acta mater., 45(2), 575–585.
Article
Google Scholar
Jacot, A., & Rappaz, M. (1998). Modeling of reaustenization from the perlite structure in steel. Acta mater., 46(11), 3949–3962.
Article
Google Scholar
Karabelchtchikova, O., & Sisson Jr., R. D. (2006). Carbon diffusion in steels: a numerical analysis based on direct integration of the flux. Journal of Phase Equilibria and Diffusion, 27, 598–604.
Article
Google Scholar
Kempf, M., Göken, M., & Vehoff, H. (1998). Nanohardness measurements for studying local mechanical properties of metals. Applied Physics A, 66, S843–S846.
Article
Google Scholar
Lee, S.-J., Matlock, D. K., & Van Tyne, C. J. (2011). An empirical modelfor carbon diffusion in austenite incorporating alloying element effects. ISIJ International, 51(11), 1903–1911.
Article
Google Scholar
Li, W. B., Easterling, K. E., & Ashby, M. F. (1986). The transformation hardening of steel surfaces by laser - ii hypereutectoid steels. Acta Metallurgica, 34(8), 1533–1543.
Article
Google Scholar
Liang Zhou and Yingxue Yao. (2007) Single crystal bulk material micro/nano indentation hardness testing by nanoindentation instrument and afm. Materials Science and Engineering: A, 460–461(0), 95 – 100.
Miokovic, T., Schulze, V., Vhringer, O., & Lhe, D. (2006). Prediction of phase transformation during laser surface hardening of aisi 4140 including the effects of inhomogeneus austenite formation. Materials Science and Engineering A, 435-436, 547–555.
Article
Google Scholar
Miokovic, T., Schulze, V., Vhringer, O., & Lhe, D. (2007). Influence of cyclic temperature changes on the microstructure of aisi 4140 after laser surface hardening. Acta Materialia, 55, 589–288 599.
Article
Google Scholar
Miyake, K., Fujisawa, S., Korenaga, A., Ishida, T., & Sasaki, S. (2004). The effect of pile-up and contact area on hardness test by nanoindentation. Japanese Journal of Applied Physics, 43(7B), 4602–4605.
Article
Google Scholar
Mühl, F., Jarms, J., Kaiser, D., Dietrich, S., & Schulze, V. (2020). Tailored bainitic-martensitic microstructures by means of inductive surface hardening for AISI4140. Materials and Design, 195, 108964.
Article
Google Scholar
Ohmura, E., & Inoue, K. (1989). Computer simulation on structural changes of hypoeutectoid steel in laser transformation hardening process. JSME International Journal, 32, 45–53.
Google Scholar
Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7, 1564–1583 5.
Article
Google Scholar
Orazi, L., Fortunato, A., Cuccolini, G., & Tani, G. (2010). An efficient model for laser surface hardening of hypo-eutectoid steels. Applied Surface Science, 256(6), 1913–1919.
Article
Google Scholar
Patwa, R., & Shin, Y. C. (2006). Predictive modeling of laser hardening of aisi5150h steels. International Journal of Machine Tools & Manufacture, 46, 3949–3962.
Google Scholar
Skvarenina, S., & Shin, Y. C. (2006). Predictive modeling and experimental results for laser hardening of aisi 1536 steel with complex geometric features by a high power diode laser. Surface & Coatings Technology, 46, 3949–3962.
Google Scholar
Smith, R. P. (1953). The diffusivity of carbon in iron by the steadystate method. Acta Metallurgica, 1(5), 578–587.
Article
Google Scholar
Tani, G., Fortunato, A., Ascari, A., & Campana, G. (2010). Laser surface hardening of martensitic stainless steel hollow parts. CIRP Annals - Manufacturing Technology, 59(1), 207–210.
Article
Google Scholar
Tani, G., Orazi, L., & Fortunato, A. (2008). Prediction of hypo eutectoid steel softening due to tempering phenomena in laser surface hardening. CIRP Ann Manuf Technol, 57(1), 209–212.
Article
Google Scholar
Tibbetts, G. G. (1980). Diffusivity of carbon in iron and steels at high temperatures. Journal of Applied Physics, 51(9), 4813–4816.
Article
Google Scholar
Weels, C., Batz, W., & Mehl, R. F. (1950). Diffusion coefficient of carbon in austenite. Trans. AIME, 188, 553–560.
Google Scholar
Weels, C., & Mehl, R. F. (1940). Rate of diffusion of carbon in austenite in plain carbon, in nickel and in manganese steels. Trans. AIME, 140, 279–306.
Google Scholar